中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/82383
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41777014      Online Users : 2033
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82383


    Title: 具複乘數橢圓曲線的質點問題;Primitive Root Problem on Elliptic Curves with Cm
    Authors: 陳燕美
    Contributors: 國立中央大學數學系
    Keywords: 橢圓曲線;質點;密度;複乘數;超奇異簡化;;elliptic curves;primitive points;density;complex multiplication;supersingular reduction.
    Date: 2020-01-13
    Issue Date: 2020-01-13 14:49:21 (UTC+8)
    Publisher: 科技部
    Abstract: 令E/Q 為定義在有理數上的具有複乘數(CM)橢圓曲線及 P 為曲線上秩為無窮的有理點。本計畫的目的在於探討所有質數 p 使得當E/Q 為超奇異簡化(supersingular reduction)且 P modulo p 為一質點所形成的集合的密度問題。倘若 E/Q 為平常簡化 (ordinary reduction),在GRH 是正確的前提下, Gupta 跟 Murty 證明了這個密度的存在性,並且在某些額外的條件下它們也證明了這個密度是正數。此計畫的初步目標是希望去證明存在無窮多個質數使得 E/Q 為超奇異簡化 (supersingular reduction) 且 P modulo p 為一質點。此計畫的終極目標是希望去證明所有質數 p 使得當 E/Q 為超奇異簡化且 P modulo p 為一質點所形成的集合的密度的存在性。 ;Let E/Q be an elliptic curve defined over the rational numbers, and let P be a rational point of infinite order. The purpose of this project is to study the problem about the density of the set of rational primes p for which E/Q has supersingular reduction and P modulo p is a primitive point. If E/Q has complex multiplication by a maximal order of an imaginary quadratic field, under generalized Riemann hypothesis (GRH),Gupta and Murty proved the existence of the density of ordinary primes for which P modulo p is a primitive point, and showed that the density is positive by imposing an additional assumption.The first aim of this project is to show that there are infinitely many primes p for which E/Q has supersingular reduction and P modulo p is a primitive point. The ultima goal is to prove the existence of the density of the set of rational primes p for which E/Q is supersingular and P modulo p is a primitive point.
    Relation: 財團法人國家實驗研究院科技政策研究與資訊中心
    Appears in Collections:[Department of Mathematics] Research Project

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML240View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明