金屬支撐固態氧化物燃料電池(MS-SOFC)具有高抗氧化還原及抗熱震之特性,極具潛力應用於快速啟動之發電系統或移動載具之輔助電力裝置。MS-SOFC系統在運轉使用時,隨著工作溫度改變,由於不同組件間具有不同的熱膨脹係數值,加上工作環境溫度分佈不均勻,因而會產生不可忽視的熱應力,因此,對MS-SOFC電池堆構件進行機械強度評估與熱應力分析,是設計MS-SOFC系統不可或缺的步驟。硬焊封裝為目前發展新一代MS-SOFC系統所考慮的封裝技術,為配合核研所發展高效率固態氧化物燃料電池技術,本計畫將對核研所開發適用於MS-SOFC系統硬焊封裝技術之硬焊填料,進行與金屬連接板接合之焊接件的機械特性分析,探討硬焊填料/金屬連接板接合件於不同溫度下之接合強度與破裂模式;另外,亦將對採用硬焊封裝的電池堆進行熱應力分析,探討硬焊接合性對MS-SOFC電池堆結構可靠度之影響。本研究結果將可作為核研所設計MS-SOFC電池堆結構與開發硬焊封裝填料之參考。 ;Metal-supported solid oxide fuel cells (MS-SOFCs) have recently received much more attention, in particular for applications in mobile vehicles and auxiliary power systems, as they have a lower working temperature and a shorter start-up time in comparison with other types of SOFC. Braze seals have been applied to MS-SOFCs for sealing the anode-electrolyte-cathode assembly and metallic interconnects thanks to a lower operation temperature in MS-SOFCs. The high-temperature operating conditions could generate significant thermal stresses in an SOFC stack due to thermal mismatch between components. Such thermal stresses can cause significant deformation and damage in components and degrade the structural integrity and electrochemical performance of SOFC stacks. The aim of this study is thus to investigate the high-temperature mechanical durability of the braze seal/metallic interconnect joint and the thermal stress distributions at different stages in an SOFC stack using braze sealing technique. Combing the results of mechanical test of joint strength and thermal stress analysis, an assessment model for structural integrity of MS-SOFC stack will be developed and applied to the MS-SOFC system being developed at the Institute of Nuclear Energy Research.