English  |  正體中文  |  简体中文  |  Items with full text/Total items : 68069/68069 (100%)
Visitors : 23129187      Online Users : 152
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/82779

    Title: 混合二進制編碼及相位位移法之高景深三維重建系統;Hybrid 3D Profilometry with Extended Measurement Depth Based on Binary Code and Phase Shift
    Authors: 王瀚賢;WANG, HAN-HSIEN
    Contributors: 光電科學與工程學系
    Keywords: 結構光;二進制編碼;相位位移法;三維重建;高景深;structured light;Binary Code;Phase Shift Profilometry;3D Reconstruction;Extended Measurement Depth
    Date: 2020-01-16
    Issue Date: 2020-06-05 17:12:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 從最早的針孔相機開始,到現在的單眼相機,人類就想把生活周遭的物品、事件記錄下來。然而相機只能記錄二維的影像,始終不能把真實世界中的三維資訊記錄下來,所以我們需要建立三維模型的工具以獲得真實世界中三維資訊。
    本研究在系統建構完成後以平板、球類及人臉面具做為測試樣本,以平板為樣本是為了測試重建絕對高度的精準度,將平板放置在距離基準面20 cm到60 cm的位置內,重建的誤差在0.4 cm以內;以桌球和接觸球作為已知的樣本,測試重建簡單幾何曲面的精準度,以圓形擬合與球形擬合找出半徑,同樣將桌球和接觸球放置在距離基準面20 cm到60 cm的位置內,桌球與接觸球相對高度誤差分別在0.04 cm以內、0.06 cm以內;最後以人臉面具證明可以重建較複雜結構的三維資訊。
    ;From the earliest pinhole camera to the Monocular camera, humans want to record the objects and events.However, the camera can only record two-dimensional (2D) images, and can never record the three-dimensional(3D) information in the real world. So we need instruments to build 3D models to preliminary 3D information in the real world.
    3D models have been widely used in various fields. Self-driving and Robotic vacuum cleaner measure distance and obstacles in front. The dynamic capture of the human face during film shooting, recording the actor′s face changes to facilitate the post processing. Modeling of the teeth and various organs in medical treatment can be used to observe the health of the patient or to establish an accurate model. How to record real items more accurately becomes another topic.
    Nowadays, among many different technologies from 3D modeling, the 3D modeling based on structured light usually faces the problems of lacking depth of field and image distortion caused by angle of view. This study is also based on structured light and hoped these two problems can be improved. In addition, the measurement is performed without a reference plane and the system′s mobility is improved. This study combines a micro-projector with a mobile phone to provide structured light with a micro-projector, and then capture a structured-light image with a mobile phone. In the past, the most commonly algorithm used in structured light systems was three step phase shifting. It reconstructs the image after obtaining the phase difference, but this method is easy to cause deformation in the position of a large angle of view. So this study combine binary coding and phase shifting method. Binary coding located the fringes on the sample accurately, find out the position corresponding to the reference plane, and then clearly know the angle of view of the sample corresponding to the camera, and use triangulation to correct the aberrations at this angle of view. Because the relative angle of view between the camera and the sample can be calculated using the previously recorded binary coded fringes, three-dimensional information can be reconstructed without the need for information on the reference plane. Finally, the combination of the phase shifting method is to further obtain more detailed phase information after obtaining the position of the fringe to obtain more complete three-dimensional information.
    In this study, tablets, balls and face masks are used as samples after the system architecture is completed. The plate is used as a sample to test the accuracy of the absolute height of the reconstruction. Placing the plate within 20 cm to 40 cm from the reference plane, the reconstruction error is within 0.5 cm. Using table tennis and contact balls as known samples, test the accuracy of reconstructing simple geometric surfaces. Find the radius with circular fitting and spherical fitting, and also place the table tennis and contact ball within 20 cm to 40 cm from the reference plane. The errors of table tennis and contact ball fits within 0.12 cm and 0.1 cm. Eventually, the face mask proves that it can reconstruct three-dimensional information of more complex structures.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明