表面增強拉曼散射(surface enhanced Raman scattering, SERS)可大幅提升分子的光訊號強度,已逐漸成為分子診斷的有效工具。在本研究中,我們以塗有銀 (Ag) 奈米顆粒的氮化銦鎵(InGaN)量子井,作為新型的SERS基板,並以此檢測DNA。透過優化Ag奈米粒子的尺寸和密度,我們以局部表面電漿共振 (localized surface plasmon resonance, LSPR) 和電荷轉移共振 (charge transfer resonance, CTR) 的效應來增強DNA的SERS訊號。本研究所提出的InGaN SERS基板,可檢測濃度低至10-6 M的19-mers DNA。;Surface enhanced Raman scattering has gradually become an effective tool for molecular diagnosis in light of the significant intensity magnification. In this project, InGaN (QWs), coated with silver (Ag) nanoparticles are utilized as new SERS substrate for DNA detection. Optimizing the size and density of silver (Ag) nanoparticles and the roughness of the substrate, we aim to maximize the SERS signal via localized surface plasmon resonance (LSPR) and charge transfer resonance (CTR) involving the collective oscillation of electrons at the Ag surface. Electrons trapped within the QWs serve as new source to supply the resonance charges for LSPR and CTR process, contributing to the enhancement factor of SERS. With optimizing the size and density of Ag nanoparticles, we are able to detect the 19-mers DNA with molar concentration down to 10-6 M.