在我們生活中,生醫與我們的生活越來越相關,為了保持優良的生活品質,生醫方面知識成為最炙手可熱的研究議題。表面增強拉曼散射(surface-enhanced Raman scattering, SERS)具備高速、高靈敏度、多工的特性,是極具潛力的生醫感測工具。在此論文中,為了增強待測分子的SERS訊號,我們利用有機金屬化學氣相沉積法,在藍寶石基板上成長微米級氮化鎵粗糙表面,再成長氮化銦鎵量子井,以提升磊晶層表面的載子濃度。我們透過磊晶溫度改變磊晶層的表面粗糙度、並利用量子井的數量調整表面電荷密度。我們發現以850 ℃成長磊晶緩衝層,能得到較高的拉曼強度。此外,增加量子井的層數也能有效增加表面電荷密度、及拉曼訊號強度。未來,我們將持續優化磊晶結構、繼續增強拉曼效應。;Surface-enhanced Raman scattering (SERS) is a promising biosensing tool because of many merits, including high speed, high sensitivity and multiplexing. In this study, in order to enhance the SERS intensity of analytes, we used metal organic chemical vapor deposition (MOCVD) to grow micro-roughened InGaN quantum wells (QWs) on sapphire substrates.In the MOCVD growth, substrate temperature was used to adjust the surface morphology, while quantum well number was employed to control the density of surface charge.We found that the buffer layer grown at the substrate temperature of 850℃ can produce the surface roughness leading to the highest SERS intensity of single-stranded DNA. It is also found that increasing the number of QWs can effectively enhance surface charge density on the SERS substrate. These results demonstrate that the optimized surface roughness and surface charge density can facilitate the SERS process.