中文摘要 本研究利用計算式鬼影成像中的壓縮感知理論及鬼影成像系統,結合光聲顯微鏡架構,組建出光聲鬼影顯微成像架構。並利用碳纖維作為樣品還原其光聲影像來驗證光聲鬼影顯微成像系統。 本實驗系統以1064 nm近紅外雷射光源,通過無聚焦系統放大光斑後投影在數位微鏡陣列上,以反射雷射光經過顯微鏡成像在物體表面上,接收產生的光聲訊號並透過壓縮感知理論的Dantzig selector演算法來還原物體的光聲影像。當中系統在Y方向上的點擴散函數半高全寬為3.35 um,X方向上半高全寬為2.78 um,成像系統可解析影像深度約3 um,還原範圍長約101.9 um和寬約64.39 um (共2880像素),在取樣圖案數除基底總數0.22 (660次),便能還原碳纖維的光聲影像,訊號區域平均訊號和非訊號區域平均訊號的比值在2.3以上,而其還原影像理想時間約38秒。 ;Abstract This research is using the Compressive Sensing theory(CS theory) and Ghost Imaging system(GI system), combine with Photoacoustic microscopy system(PAM system) to build up as CS-GI-PAM system. Using the Carbon fiber as sample to reconstruct its Photoacoustic image to verify CS-GI-PAM system. In this study, the Pulse laser, which wavelength is 1064nm, through the afocal system to expend laser beam and project on digital micromirror device. Utilize DMD to reflect laser power distribution and image it on the sample surface, to generate photoacoustic signal and receive signal to resconstruct image. The system Y direction point spread function’s(PSF) full width at half maximum(FWHM) is 3.35 um, X direction PSF’s FWHM is 2.78 um, system imaging depth less than 3 um. The area of the image is 101.9 x 64.39 um(total pixel is 2880). The CS-GI-PAM system can use the fraction of total basis of sampling pattern ratio 0.23(660 pattern) to reconstruct the carbon fiber photoacoustic image and the signal part ratio can higher than 2.3, the rescontruct time costs about 38s.