中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83549
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41649724      Online Users : 1410
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83549


    Title: 基於鈮酸鋰晶體1550奈米兆瓦級光學參量放大器設計;Design of Lithium Niobate Crystal Based 1550-nm Terawatt Optical Parametric Amplifier
    Authors: 蘇丰彥;Su, Feng-Yen
    Contributors: 物理學系
    Keywords: 光學參量放大;啁啾脈衝放大;鈮酸鋰晶體;磷酸氧鈦鉀晶體;角度色散;非線性光學;非同軸相位匹配;紅外光;高功率雷射;Optical parametric amplification;Chirped-pulse amplification;Lithium niobate (LN) crystal;Potassium titanyl phosphate (KTP) crystal;Angular dispersion;Nonlinear optics;Non-collinear phase matching;Infrared;High-power laser
    Date: 2020-08-19
    Issue Date: 2020-09-02 15:48:34 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 1550 nm 頻段光學參量放大器,與800 nm 摻鈦藍寶石雷射放大器相比,在雷射科技方面有以下特點: (1) 種子光來源為光纖振盪器,對環境的影響較不敏感,光纖振盪器穩
    定度比摻鈦藍寶石振盪器高。 (2) 光參量放大器有較高增益,可以大幅縮短整體光路。 (3) 幫浦光可以直接使用摻釹釔鋁石榴石雷射(Nd:YAG) ,不需要倍
    頻。 (4) 光柵脈衝延展器與脈衝壓縮器所產生的二階、三階色散與波長成正相關,因此將中心波長移至1550 nm 有助於縮小延展器與壓縮器的體積。

    然而,受限於晶體大小(磷酸氧鈦鉀, KTP) 、晶體吸收(硼酸鋇, BBO),使得1550 nm 光學參量放大器能量受到限制。由於鈮酸鋰晶體
    尺寸可超過3 吋,利用此晶體來做為1550 nm 光學參量放大器的增益介質,放大器能量得以提升,但是種子光須有角度色散來滿足相位匹配條件。在2016, György Tóth [1] 設計使用2 片光柵產生角度色散滿足匹配條件,再利用另外2 片光柵補償角度色散與空間色散。

    在本論文中,我提出三等邊棱鏡架設來取代György Tóthn 所提出的雙光柵架設。首先,使用一組等邊棱鏡產生空間色散。再設計使用第三顆等邊棱鏡產生角度色散滿足放大匹配條件。並設計放大器幫浦光強度、種子光強度、相位匹配角與晶體厚度。放大後設計使用光學光柵壓縮器補償角度色散。此設計結構較為簡單,且稜鏡價格便宜。

    根據數值分析模擬, 使用此新設計可望在1550 nm 頻段產生 200 mJ,脈衝寬度50 fs 的脈衝雷射,尖峰功率為4 兆瓦。在強場
    雷射領域方面,由於有質動力與波長平方成正比,中心波長為1550 nm,雷射脈衝的有質動力增加為4 倍,有利於有質動力相關實驗,例如實驗室天文學、雷射加速器。;In comparison with Ti:sapphire laser amplifiers in 800 nm band, the optical parametric amplifiers (OPA) in 1550 nm band shows four the merits: (1) Erbium-doped fiber oscillator generated seed pulse is insensitive to the environment. (2) The higher gain per pass for OPA shortens the optical path. (3) Nd:YAG laser without second-harmonic generation serves as the pumping
    laser. (4) The 1550-nm system shrinks the size of the grating-pair based stretcher and compressor because the second-order and third-order dispersion from the stretcher and compressor positively correlate with the wavelength.

    However, the output energy of 1550-nm OPA is limited by crystal size (Potassium titanyl phosphate, KTP) and crystal absorption (Barium borate, BBO). A lithium niobate (LN) crystal as the gain media for the 1550-nm OPA system enables to enhance the output energy since the fabrication of more than 3-inch crystal size is available, but the angular dispersion of seed is critical to the phase-matching condition. In 2016, György Tóth [1] utilized a double-grating setup to generate the required angular dispersion to match the phase-matching condition, and then utilized one
    more double-grating setup to compensate the spatial chirp and angular dispersion.

    In this thesis, I propose a triple-prism setup to replace the György Tóth′s double-grating setup. Firstly, a prism-pair and other one prism generate a spatial chirp and the required angular dispersion for the phase-matching
    condition, respectively. Secondly, the pumping intensity, seed
    intensity, the phase-matching angle and the crystal length are designed for
    the amplification. Thirdly, a grating-pair based compressor to compensate
    the angular dispersion. Compared with György Tóth′s double-grating setup, the triple-prism setup is concise and economical.

    According to the numerical simulation, this new design of 1550-nm OPA is expected to generate 50-fs pulse laser with output energy 200 mJ and peak power 4 TW. Furthermore, the ponderomotive energy is quadruple compared with the 800-nm Ti:sapphire lasers due to the double-larger wavelength. Hence, this new system of 1550-nm OPA benefits high energy
    density physics, e.g. laboratory astronomy and laser acceleration.
    Appears in Collections:[Graduate Institute of Physics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML189View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明