English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 78852/78852 (100%)
造訪人次 : 37819693      線上人數 : 581
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83596


    題名: 多孔石墨烯邊界態之氮改質於超級電容的效能研究;Study on Edge-Nitrogen Doped Graphene for High Performance Supercapacitors
    作者: 黃俊偉;Huang, Chun-Wei
    貢獻者: 能源工程研究所
    關鍵詞: 氮摻雜石墨烯;多孔石墨烯;超級電容
    日期: 2020-07-29
    上傳時間: 2020-09-02 16:41:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來氮摻雜石墨烯在諸多領域的研究中展現了比本質石墨烯更優異的電化學特性,石墨烯的氮摻雜可分為三種主要型態,其中對於電化學增益最大的屬於邊界態的氮改質(吡啶(pyridinic)和吡咯(pyrrolic)),透過多孔石墨烯大量裸露的邊界缺陷,促使氮摻雜的過程中石墨烯的邊界缺陷能成為摻雜的優選位置,進而比較出邊界態氮摻雜對電化學及儲能應用上的增益。

    本研究利用奈米銅粒子和電化學剝離石墨烯複合物(Cu-ECG)合成氮摻雜多孔石墨烯,奈米銅粒子可以在石墨烯片層上蝕刻出不同大小的孔洞(階層孔洞),進而利用氨氣熱退火(Ammonia annealing)實現氮摻雜的效果。透過XPS和EDS元素分析可得知,氮摻雜後的多孔石墨烯可同時擁有三種氮摻雜型態,且透過對多孔石墨烯的氮摻雜不僅可以提升氮摻雜率,甚至可有效提升邊界態氮摻雜的比例。

    相較於多孔石墨烯,邊界態氮摻雜的多孔石墨烯在高質量負載時的比電容值可增加49.0%且擴散係數也提升了44.4%,且經過15000次的循環測試之後仍可保有高於99%的電容維持率,另外在BET分析中氮摻雜石墨烯的比表面積提升了兩倍以上,且孔隙的尺寸分布也較氮摻雜前更廣。本研究證實氮摻雜可以在不破壞原有特性的情況下有效的提升多孔石墨烯的電化學表現,同時也探討了邊界態氮改質的多寡對氮摻雜多孔石墨烯儲能表現的影響。
    ;N-doped holey graphene is promoted to solve the main issue of graphene for supercapacitor such as volumetric and gravimetric also the ion-transport mobility. This work proposed two strategies to synthesis N-doped holey graphene with ammonia (NH3) as N-doped precursor. This first strategy, the holey graphene (HG) synthesized by rationally design of the Cu nano catalyst in the annealing method, then the N-doped holey graphene (N-EHG) is produced by post annealing HG in NH3 gas. The second strategy is proposed by post-annealing treatment of Cu nano catalyst/graphene (Cu-Graphene) in NH3 gas to produced N-doped graphene (N-BHG).
    Both N-EHG and N-BHG resulted the holey graphene, the edge N-doping (pyridinic and pyrrolic) graphene and graphitic type of N-doping. However, the N-EHG achieved higher surface are up to 509.03 m2/g (2-fold higher than HG) than N-BHG 264.65 m2/g. Also the pore size distribution of N-HG is larger than HG and N-BHG. In the electrochemical application, the N-EHG demonstrated higher specific capacity up to 449.2 mF/cm2 that 49.0% higher than HG (404.2 mF/cm2). In the stability test, the N-EHG could maintain 99% capacity after more than 15,000 cycles retention testing. The diffusion coefficient of N-EHG is increased 44.4% then HG in the high mass loading (15 mg/cm2) that indicate excellent ionic transport. Finally, our method was effectively to synergetic holey and N-doped graphene that a low-cost, highly efficient for supercapacitor application.
    顯示於類別:[能源工程研究所 ] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML211檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明