中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83757
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41650587      在线人数 : 1380
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83757


    题名: Change point estimation based on copula-based Markov chain model for binomial time series data
    作者: 賴慶杰;Lai, Ching-Chieh
    贡献者: 統計研究所
    关键词: 馬可夫鏈;Binomial time series data;copula;Markov chain;serial dependence;attribute control chart;parametric bootstrap
    日期: 2020-07-30
    上传时间: 2020-09-02 17:02:26 (UTC+8)
    出版者: 國立中央大學
    摘要: 在序列分析中,改變點的偵測與估計是一典型的問題並且在品質管制中扮演重要的角色。本篇考慮了binomial CUSUM管制圖來偵測改變點。當binomial CUSUM管制圖偵測到改變點,樣本獨立的前提下最大概似估計量可用來估計改變點。然而獨立假設在品管上是存疑的。本篇我們建造了新的模型,我們將序列相關性納入考量,並利用copula-based Markov chain來描述此相關性。我們利用最大概似法求得估計量並建造我們的R套件來推廣我們的研究成果。區間估計我們用parametric bootstrap和大樣本近似兩種方法,並將兩者以模擬做比較。本篇比較了我們提出的方法與文獻中的方法並分析實務上的資料來展示我們的研究成果。;Detection and estimation of a change point is a classical problem in sequential analysis, and is an important practical issue in statistical process control. This paper is concerned about the binomial CUSUM control chart for detecting a change point for attribute data, which is extensively applied to industrial process control, health care, public health surveillance, and other fields. If the binomial CUSUM chart detects a change point, a maximum likelihood estimator can be used to estimate the change point under the assumption that the observations are independent. However, the independence assumption is questionable in many applications of statistical process control. In this paper, we consider a new change point model, where the serial correlation follows a copula-based Markov chain model and the marginal distribution follows the binominal distribution. We develop algorithms for computing the maximum likelihood estimator, and implement them in our original R package. For interval estimation, we propose a parametric bootstrap procedure and an asymptotic normal approximation procedure. We compare the performance of the two interval estimation procedures by simulations. We also compare our proposed method with the existing estimators in terms of mean squared error. We analyze the jewelry manufacturing data for illustration.
    显示于类别:[統計研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML170检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明