中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83814
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41646808      Online Users : 2304
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83814


    Title: 白帶魚形狀特徵擷取與魚種辨識;Shape Feature Extraction of Trichiurus lepturus and Variety Identification
    Authors: 許致杰;Hsu, Chih-Chieh
    Contributors: 通訊工程學系在職專班
    Keywords: 白帶魚;形狀特徵擷取;魚種辨識
    Date: 2020-07-29
    Issue Date: 2020-09-02 17:09:32 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 白帶魚是臺灣近海重要的撈捕和消費的主要魚類之一。臺灣常見的白帶魚品種有三種,目前在撈捕和消費現場要進行白帶魚的品種辨識,都需藉由專家經驗人工辨識,因此難以達到普及應用目的。本研究提出一個白帶魚特徵擷取方法,藉由眼睛中心至頭部輪廓的距離向量,來鑑識白帶魚品種。我們首先透過U-Net神經網路進行白帶魚偵測以及頭部分割,接著提取輪廓以及偵測魚眼,最後計算每隻白帶魚的形狀特徵。為了驗證此一特徵的魚種鑑別性,我們以機率神經網路、決策樹、支援向量機以及k近鄰分類器等四種分類器來進行魚種辨識。;Trichiurus lepturus is one of the main fishes that are harvested and consumed off the coast of Taiwan. There are three common species of Trichiurus lepturus in Taiwan. Currently, fish’s classification at the fishing and consumption sites, manually identified the species of Trichiurus lepturus by experts or experiencers is required. Therefore, it is difficult to achieve the popularization purpose. This research mentions about a feature extraction method for Trichiurus lepturus, which uses the distance vector from the center of the eye to the outline of the head, to identify the species of Trichiurus lepturus. First, we use the U-Net neural network to detect the Trichiurus lepturus and execute the head segmentation, then extract the contours and detect fish eyes, and calculate the shape features of each Trichiurus lepturus. In order to verify the "discriminative" of shape feature, we use four types of classifiers such as probability neural network, decision tree, support vector machine and k-nearest neighbor classifier to classify the fishes.
    Appears in Collections:[Executive Master of Communication Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML219View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明