English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41635783      線上人數 : 1198
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83841


    題名: 深度學習應用於HEVC畫面內編碼單元切割;CNN-based CU Partition for HEVC Intra Prediction
    作者: 王晧群;Wang, Hao- Chiun
    貢獻者: 通訊工程學系
    關鍵詞: 高效率視頻編碼;支持向量機;卷積神經網路;編碼單元;快速深度決策;畫面內預測;快速模式預測;改善編碼性能;分散式視訊編碼;深度學習;High Efficiency Video Coding (HEVC);Support Vector Machine(SVM);Convolutional Neural Network(CNN);Coding Unit(CU);Fast Depth Decision;Intra Prediction;Fast Mode Prediction;Improved Coding Performance;Distributed Video Coding;Deep Learning
    日期: 2020-07-31
    上傳時間: 2020-09-02 17:12:57 (UTC+8)
    出版者: 國立中央大學
    摘要: 在這日新月異的時代,隨著網路的進步以及科技的發達,人們對於追求更高品質的事物始終不會停滯,對於高解析度的影像也是如此,為了能夠更有效率的壓縮這些巨大的視訊資料量,HEVC採用了一些更新穎的技術,如編碼樹單元、碼率失真最佳化等等,但於此同時也造成了編碼計算複雜度的提升,本論文結合近幾年來十分熱門的深度學習與機器學習,即卷積神經網路與支持向量機,將其應用於HEVC編碼單元深度決策。不同於原始HEVC遞迴運算編碼單元深度0至3,本論文在編碼一開始時先使用支持向量機將編碼單元分成簡單區塊與複雜區塊,再利用卷積神經網路分層向下細分,分類完成的區塊將只會進行一次深度的編碼,藉此大幅節省編碼所需時間。而後進一步將支持向量機的決策值,透過額外資訊減少進入卷積神經網路的次數便提前完成分區,實驗結果與HEVC相比,整體平均BDBR上升1.5%的情況下,編碼時間大約可以節省64%,後續再導入分散式視訊編碼的概念,結合快速預測模式與解碼端之後處理補償影像品質。;In this ever-changing era, with the advancement of the Internet and the development of technology, people will never stop pursuing higher-quality things, as well as high-resolution images. In order to be able to compress these huge videos more efficiently The amount of data, HEVC uses some newer technologies, such as coding tree units, rate distortion optimization, etc., but at the same time it also causes the increase in the complexity of coding calculations. This paper combines deep learning and machine learning, which have been very popular in recent years, that is, convolutional neural networks and support vector machines, are applied to HEVC coding unit depth decision. Unlike the original HEVC recursive operation coding unit depth 0 to 3, at the beginning of this paper, the support vector machine is used to divide the coding unit into simple blocks and complex blocks, and then the convolutional neural network is used to layer down , The classified blocks will only be coded once in depth, thereby greatly saving coding time. Then, the decision value of the support vector machine is further used to reduce the number of entering the convolutional neural network through additional information to complete the partition in advance,compared with HEVC, the overall average BDBR is increased by 1.5%, and the encoding time can be saved by about 64%.Finally, introduce the concept of decentralized video coding, combined with fast mode prediction and post-processing to compensate the image quality.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML103檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明