中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/83855
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41739401      在线人数 : 1470
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/83855


    题名: 基於CNN與LSTM機器學習模型之交通事件預測與分析:以桃園市為例;Traffics Event Forecast and Analysis Based on CNN and LSTM Machine Learning Models: A Case Study of Taoyuan City
    作者: 黃郁凱;Huang, Yu-Kai
    贡献者: 通訊工程學系
    关键词: 機器學習演算法;時空資料;交通事件預警;Machine Learning;Spatio-Temporal Data;Traffic Event Prediction
    日期: 2020-08-18
    上传时间: 2020-09-02 17:15:31 (UTC+8)
    出版者: 國立中央大學
    摘要: 城市交通日漸繁忙,事故發生機率亦隨之上升,過去有許多研究應用機器學習演算法,預測未來交通事故熱區、車流量或平均車速,然而多數的研究著重於如何提出新穎的機器學習架構。本論文的研究是以桃園市部分行政區為實驗場域,於各行政區取道路較密集的區域,每區域約16 平方公里,利用經典機器學習模型:CNN 與LSTM 組合訓練模型,分析在何種CNN-LSTM 層數組合下,能夠以較低的訓練成本,得到準確率較高的模型組合。;Urban traffic is getting busy, and the probability of accidents is also rising. In the past, many studies applied machine learning algorithms to predict hot spots of traffic accidents, traffic flow, or average speed. However, most of the research focused on how to propose novel machine learning architectures. The study in this thesis uses some regions of Taoyuan City as experimental fields. By taking dense road areas in these regions, each
    area is about 16 square kilometers. This study uses the classic machine learning model: Convolution Neural Network(CNN) and Long Short-Term Memory(LSTM). In sensitivity to varied number of CNN-LSTM layers, this study examines the performance of higher accuracy and lower training cost.
    显示于类别:[通訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML121检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明