English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23025821      Online Users : 213
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/83940

    Title: 基於深度學習方法之高精確度瞳孔放大片偵測演算法;Ultra-Accurate Detection of the Existence of Cosmetic Contact Lens for Iris Images based on Deep Learning
    Authors: 劉榮勝;Liu, Rong-Sheng
    Contributors: 資訊工程學系在職專班
    Keywords: 瞳孔放大片;深度學習;虹膜分割;虹膜識別;Cosmetic contact lens;Deep learning;Iris segmentation;Iris recognition
    Date: 2020-08-11
    Issue Date: 2020-09-02 17:43:40 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,瞳孔放大片已經成為許多民眾的生活用品,更是不少愛美時尚男女的生活必需品。為了符合更多需求,廠商也針對色澤、風格和紋理提供更多的選擇,豐富產品的多變性。這些瞳孔放大片也因改變虹膜紋理在虹膜辨識上受到考驗。

    ;In recent years, Cosmetic Contact Lens (CCL) has become a daily necessity for many people, and it is also a necessity for many people who love beauty and fashion. In order to meet more needs, manufacturers also provide more choices for color, style and texture to enrich the variability of products. These Cosmetic Contact Lens (CCL) also becomes a challenge for iris recognition because it changes the appearance of the texture of the iris.

    However, in deep learning method, one needs to collect a lot of data for the training of the network model, and extract rules from the data. In addition, before training a deep learning, it is better to preprocess the image for the sake of data augmentation, such as : image cropping, scaling, rotating to achieve higher accuracy and robustness. This paper collects CCL samples from 9 brands and 18 styles from Taiwan. We invite 101 participants and collect eye images with and without wearing CCL. The total number of images used in the experiment is 30390. At the end, we can achieve an accuracy higher than 99% using deep learning based models.
    Appears in Collections:[資訊工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明