English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627170      線上人數 : 2178
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84052


    題名: A Robust Two-Stage Pre-processing Method to Improve Vehicle License Recognition
    作者: 詹振宗;Chan, Cheng-Tsung
    貢獻者: 資訊工程學系
    關鍵詞: 文字辨識;文字偵測;光學字元辨識;車輛行照;Text Recognition;Text Detection;Optical Character Recognition;Vehicle license
    日期: 2020-07-29
    上傳時間: 2020-09-02 17:59:06 (UTC+8)
    出版者: 國立中央大學
    摘要: 各種金融保險和投資應用網站都要求客戶上傳身份證明文件,例如財力證明和汽車行照,以驗證其身份。然而,人工驗證這些文件的成本很高。因此,自動文件識別的需求越來越大。在本研究中,我們提出一個穩健有效車輛行照辨識系統。本研究內的文字偵測分為兩個階段。在第一階段,矯正網路矯正了經常出現在未掃描行照中可能出現的變形。在第二階段,定位網路準確定位每個行照內欄位並切割成欄位影像。隨後欄位影像由商業文字識別軟體辨識欄位中的文字。由於車輛行照內資料的敏感性,很難收集到足夠的訓練資料進行模型訓練。因此,在進行模型訓練前,我們合成了假行照影像數據集,並且進行預處理以避免過擬合。此外,在進行文本識別之前,還利用降噪網路消除行照背景雜訊,消除文本的邊界,使模糊的文本更加清晰。我們的方法只需要客戶上傳一張行照照片,即使照片拍得不好,行照內欄位文字也能被識別。 最後,通過真實數據集對本系統的性能進行了評估,辨識系統準確率接近90%。
    ;upload identity documents, such as financial certificates and vehicle licenses, to verify their identities. Manual verification of these documents is costly. As a result, there is an increasing demand for automatic document recognition. This study proposes a robust method for pre-processing vehicle license before text recognition. The proposed method has two stages. In the first stage, the possible distortion that often appears in non-scanned documents is repaired. In the second stage, each data field is accurately located. The subsequent captured fields are then processed by commercial text recognition model. As the vehicle license is sensitive, it is difficult to collect enough entries for model training. Consequently, the fake vehicle licenses are synthesized and pre-processed to avoid the overfitting when used for model training. Additionally, before text recognition, an encoder is applied to reduce the background noise, remove the border crossing over text, and make the blurred text clearer. Our approach only requires the customer to upload a photo of the vehicle license and the text can be recognized even when the photo is taken poorly. The performance of the proposed method is evaluated through true dataset, and the accuracy is close to 0.9.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML148檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明