English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627607      線上人數 : 2352
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84088


    題名: 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果;Building CNN Model to Reclassify Overkill Fabrics from Company′s AOI Defect Results
    作者: 芮妮雅;Akhmalia, Rania
    貢獻者: 資訊工程學系
    關鍵詞: 瑕疵;defect;CNN;AOI
    日期: 2020-07-30
    上傳時間: 2020-09-02 18:03:04 (UTC+8)
    出版者: 國立中央大學
    摘要: 宏遠是一家紡織廠商,利用AOI來偵測紡織布上的瑕疵。然而目前AOI無法有效解決他們所遭遇的問題,主要是因為「瑕疵」還能夠細分成多個種類。AOI使用三個反射光相機與三個穿透光相機,依據AOI的規則,擷取出多種瑕疵種類,如:摺痕、斷線、髒污、脫線、白點等。然而宏遠卻不同於AOI規則,對瑕疵種類有不同的定義,他們認為的瑕疵如:破洞、斷經等種類。 因為兩種瑕疵定不同,使得AOI偵測出的瑕疵影像造成多達90%的誤判,因此宏遠專業的檢測員需要重新將誤判影像分類成有瑕疵與無瑕疵。而我們的目標則是要建立深度學習的模型,來減少檢測員花在重新分類上的勞力。這項作業使用Autoencoder來重建資料集,再利用CNN進行分類。實驗的結果顯示我們的模型能夠減少檢測員高達80%以上的勞力耗費,同時保有FNR小於5%與FPR小於15%的表現。;The textile company applied AOI to detect a defect on fabric automatically. In their case, AOI failed to overcome this problem because there are differences defect categories. AOI has defect with categories among others; fold, black thread, broken thread, hooked thread, needle mark, mosquito, stain, thread-off, white spot and uneven thickness. Whereas, Textile company has different defects categories, its categories among others; Thinning, missing weft, stop mark, weft mark, loose weft, warp break, mechanical section and fold back. These differences caused more than 90% of captured images are not defect (overkill). A Professional Inspector in Textile Company reclassified those overkill images into real defect and non-defect images. Our goal in this work is, to reduce a Professional Inspector working loads by proposed two approaches. The first approach is, building a tiny and light CNN architecture as classifier model. While second approach is, combining Autoencoder to reconstruct the dataset as an input to CNN model that built in first approach. The result shows that the models are able to reduce a Professional Inspector working loads up to 90% with maximum FNR 5% and FPR less than 5%.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML87檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明