中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84120
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142817      Online Users : 1294
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84120


    Title: 應用生成對抗網路於嬰兒骨架偵測與早產兒整體動作指標分析;The Application of the Generative Adversarial Network in Detecting Body Poses of Infants and Assessing General Movements in Preterm Infants
    Authors: 李妮蓁;Lee, Ni-Chen
    Contributors: 資訊工程學系
    Keywords: 生成對抗網路;嬰兒骨架偵測;嬰兒姿態分析;嬰兒整體動作指標;腦性麻痺;GAN (generative adversarial network);Infant skeleton detection;Infant motion analysis;cerebral palsy;GMA (General Movement Assessment)
    Date: 2020-08-18
    Issue Date: 2020-09-02 18:07:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 早產兒因發育尚未成熟,所以相較於一般足月嬰兒有更高的風險在運動神經發展上有所受損或罹患腦性麻痺。臨床上,要精準判斷一個嬰兒是否在運動神經發展上有所受損,不是依賴一個有經驗的醫生在一段錄影好的影片上利用視覺來評估,就是得要仰賴昂貴的儀器。可想而知,這是個耗時且昂貴的診療程序。所以,一個能夠自動化評估的輔助系統就變得十分迫切了。最近幾年來,OpenPose 是一個有效且被普遍採用的姿態估測的演算法,但它的缺點是它是針對成人姿態所訓練而成的,導致若是應用於嬰兒姿態偵測時,整體效果會下降。所以,此論文會開發一個嬰兒姿態偵測演算法,然後,據此演算法開發出一個嬰兒整體動作指標分析輔助系統。首先透過單眼相機記錄嬰兒影像,再透過生成對抗網路 (Generative Adversarial Network)生成嬰兒骨架,最後使用一些後處理技術 (如:平滑化、去雜訊濾波器等)萃取出骨架點資訊。基於以上骨架點資訊,嬰兒運動狀態可以透過位移與速度的變異數與運動頻率來呈現,之後再自動化輸出相對應的嬰兒評估指標。最後本論文以實驗驗證提出生成對抗網路的關節預測準確性與整體嬰兒評估指標之有效性。;Premature babies are not yet mature, so they have a higher risk of developing motor nerve damage or cerebral palsy than full-term infants. Clinical assessments for infant’s risk of developing neuromotor impairment either are assessed through visual examination by specialized clinicians via recorded videos or involve expensive equipment, which are usually time-consuming, expensive, and only available in highly-resourced environments. This makes assessment inaccessible for families of limited means and in low resource countries. Therefore, it is desirable to automate the process of evaluating the quality of infant movements; otherwise, the early identification is not possible. In recent years, the OpenPose is a very popular human pose estimation algorithm; however, it focuses on adults, leading a degradation of accuracy if applied to infants. Therefore, this paper will develop an algorithm for infant posture detection, and then, based on this algorithm, an auxiliary system for the analysis of infant overall motion indicators will be developed. First record the baby image through the monocular camera, then generate the baby skeleton through the Generative Adversarial Network, and finally use some post-processing techniques (such as smoothing, noise reduction filter, etc.) to extract the skeleton point information. Based on the above skeleton point information, the baby′s movement status can be presented through the variation of speed and acceleration and the movement frequency, and then the corresponding infant evaluation index is automatically output. Finally, some experiments will be designed to validate the effectiveness of proposed method.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML227View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明