English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625434      線上人數 : 1949
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84131


    題名: 論文題目集成和多模態學習用於病理性語音分類;ENSEMBLE AND MULTIMODAL LEARNING FOR PATHOLOGICAL VOICE CLASSIFICATION
    作者: 黎亞媞;Ariyanti, Whenty
    貢獻者: 資訊工程學系
    關鍵詞: 病理性語音;聲學信號;集成學習;二進制分類;Pathological Voice;Acoustic Signal;Ensemble Learning;Binary Classification
    日期: 2020-08-20
    上傳時間: 2020-09-02 18:09:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 語音障礙是現代社會中最常見的醫學疾病之一,特別是對於有職業語音需求的人群。 在本文中,我們研究了一種通過組合聲信號和病歷對病理性語音障礙進行分類的堆疊式集成學習方法。 在提出的集成學習框架中,堆疊支持向量機(SVM)形成了一組弱分類器,並為元學習者提供了一個深度神經網絡(DNN)。 基於DNN的高度複雜性,將聲學特徵和病歷結合起來以獲得更好的分類性能。 與單個SVM和DNN分類器相比,具有更好的性能,並且具有顯著的優勢。;Voice disorders are one of the most common medical diseases in modern society, especially for those with occupational voice demand. In this paper, we investigate a stacked ensemble learning method to classify pathological voice disorder by combining acoustic signals and medical records. In the proposed ensemble learning framework, a stacked support vector machine (SVM) form a set of weak classifiers and a deep neural network (DNN) for a meta learner. Based on the high complexity of DNN, acoustic features and medical records are combined to attain better classification performance. The better performance than single SVM and DNN classifiers with a notable margin.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML194檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明