English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23051824      Online Users : 315
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84271

    Title: 機器學習在肺炎資料分析中的應用;The application of machine learning to the data analysis of pneumonia
    Authors: 楊庭瑄;Yang, Ting-Hsuan
    Contributors: 數學系
    Keywords: 機器學習;卷積層積網路;深度學習;強化學習;優化器;過濾器;machine learning;volume-based layered network;deep learning;reinforcement learning;optimizer;filter
    Date: 2020-07-17
    Issue Date: 2020-09-02 18:46:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 隨著科技日益發展,人工智慧扮演了很重要的角色,機器的優勢在於能重複工作並且也不會疲乏,近年來許多人開始探討如何讓機器有著像人類的智慧使得這領域在這幾年快速發展。機器學習跟感知與估測扮演了很重要的角色,其中機器學習又可分為四種:監督式學習、 非監督式的學習、半監督式的學習、增強式學習。其中神經網路在機器學習上扮演了很重要的角色。感知跟估測可以藉由已知的資訊去推得更多未來的資訊。
    且使用卷積神經網路的方式去建立肺炎辨識模型, 並選定幾種方式可能會影響肺炎辨識的原因作為討論、分析的對象。由實驗結果發現,dropout比例大小、優化方法、遷移學習、凍結參數、卷積層層數都會影響模型的表現能力。
    ;With the development of science and technology, artificial intelligence has played a very important role. The advantage of machines is that they can repeat work without fatigue. In recent years, many people have begun to discuss how to make machines have human-like intelligence to make this field fast developed in these years. Machine learning plays a very important role in perception and estimation. Among them, machine learning can be divided into four types: supervised learning, unsupervised learning, semi-supervised learning, and enhanced learning. Among them, neural networks play a very important role in machine learning. Perception and estimation can use the known information to deduce more future information.
    Image recognition plays an important role in artificial intelligence, such as animal recognition, handwriting recognition, and license plate recognition. The main purpose of using deep learning is to be able to extract features and reduce costs, but it is not so easy to make a good classification, many factors will affect each other. For example: computer equipment, parameter setting, optimizer selection, model architecture.
    The pictures of pneumonia in this experiment come from kaggle, and use the method of convolutional neural network to establish a pneumonia identification model, selecting several ways that may affect the identification of pneumonia as the object of discussion and analysis. From the experimental results, it is found that the dropout ratio, optimization method, transfer learning, freezing parameters, and the number of convolutional layers all affect the performance of the model. Keywords: machine learning, volume-based layered network, deep learning, reinforcement learning, optimizer, filter, transfer learning.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明