English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23107346      Online Users : 709
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/84279

    Title: An application of Bezout′s theorem: the effective minimal intersection number of a plane curve
    Authors: 李詩淳;Li, Shih-Chun
    Contributors: 數學系
    Keywords: 仿射平面曲線;交點數;Bezout定理;近似根;Embedding line;Bezout′s Theorem;intersection number;approximate roots;affine;algebraic curve
    Date: 2020-07-28
    Issue Date: 2020-09-02 18:47:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 這篇碩士論文要是研究仿射平面曲線的交點數。事實上,我們將張海潮教授和王立中教授在[CW]的論述中,歸納並得出以下我們的主要定理:

    這是應用到Bezout定理,以及在[Moh1, Moh2, Moh3, Moh4]介紹的近似根概念。此外,我們可以將Embedding Line Theorem作為一個應用並加以證明。(請參閱第八章);In this thesis, we study the intersection number of affine plane curves.
    Actually, we generalize the argument of Chang and Wang in [CW] to obtain our main theorem as follows:

    “if the curve $F(1,y,z)$ has only one place at infinity, then we would construct a curve G_j which intersects curve F(1,y,z) attaining the positive minimal intersection number among all curves."

    This is an application of Bezout′s Theorem and the approximate roots introduced by [Moh1, Moh2, Moh3, Moh4].

    Besides, we can reprove the Embedding Line Theorem as an application (see section 8).
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明