English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41645115      線上人數 : 1253
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84338


    題名: 拋光方法對塑膠微流控裝置之表面優化和結構的影響;Optimization of surface polishing method and its structure effects for polymer microfluidic device
    作者: 吳政坤;WU, ZHENG-KUN
    貢獻者: 機械工程學系
    關鍵詞: 微銑削;微結構拋光;表面粗糙度優化;微流體;Micro milling;Microstructure polishing;Surface roughness optimization;Microfluidics
    日期: 2020-07-29
    上傳時間: 2020-09-02 19:06:50 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文以PMMA/COC/CBC為微流體基板,利用微銑削加工製程進行微流體製造,由於微切削後會有殘留紋路的產生,但較少的學者討論殘留紋路的後處理方式及後處理對微結構的影響。因此本論文針對拋光製程及拋光後對模具複製時的影響做相關探討。
    實驗設計分為三階段進行,第一階段觀察微銑削加工與材料對表面粗糙度的影響,以工件表面粗糙度為評估因子,找出最適當之切削參數與材料,實驗結果顯示PMMA的切削性最佳,在加工參數(Ø 0.2 mm, 1 mm/s, 30,000 rpm)時,表面粗糙度為Ra=0.380 μm;第二階段則是利用羊毛輪與材料表面間擠壓的位移變形量(預壓量)與丙酮熔融材料之時間,來觀察拋光對表面粗糙度及微結構的影響,在工件表面粗糙度及微結構失真率中尋找最適當之拋光參數平衡點,本實驗結果顯示機械研磨拋光在預壓量0.3 mm時,表面粗糙度為Ra=0.162 μm,微結構失真率約為14%,而化學熔融拋光則是在拋光時間4 min時,表面粗糙度為Ra=0.180 μm,微結構失真率約為30%;第三階段為複製方式對微流體裝置的影響,對比複製後模具結構在表面粗糙度與微結構的影響。本實驗結果顯示熱塑性微流體裝置與PDMS微流體裝置相比,雖然會因為熱壓導致微結構些微變形,但其裝置結合強度較高壓力適用範圍更廣。而PDMS微流體裝置則能在結合時,消除加工造成的表面紋路獲得更好的表面粗糙度,且PDMS為彈性體能做到一定程度的彎折。
    ;In this paper, PMMA/COC/CBC is used as the microfluidic substrate, and the micro-milling process is used for microfluidic manufacturing. Because there will be residual lines after micro-cutting, fewer scholars discuss the post-processing methods and post-processing effects of residual lines. The influence of microstructure. Therefore, this paper discusses the polishing process and the impact of polishing on mold replication.
    The experimental design is divided into three stages. The first stage observes the effect of micro-milling processing and materials on the surface roughness, and uses the surface roughness of the test piece as an evaluation factor to find the most appropriate cutting parameters and materials. The experimental results show that PMMA has the best machinability, and the surface roughness is Ra=0.380 μm when the machining parameters are (Ø 0.2 mm, 1 mm/s, 30,000 rpm). The second stage is to use the displacement and deformation (preload) of the extrusion between the wool wheel and the material surface and the time for the acetone to melt the material to observe the effect of polishing on the surface roughness and microstructure. Find the most appropriate polishing parameter balance point in the structural distortion rate. The results of this experiment show that when the preload is 0.3 mm, the surface roughness of mechanical grinding and polishing is Ra=0.162 μm, and the microstructure distortion rate is about 14%, while the chemical melting polishing is when the polishing time is 4 min, the surface roughness is Ra=0.180 μm, the microstructure distortion rate is about 30%. The third stage is the impact of the replication method on the microfluidic device, comparing the impact of the mold structure on the surface roughness and microstructure after replication. The results of this experiment show that compared with the PDMS microfluidic device, the thermoplastic microfluidic device may cause a slight deformation of the microstructure due to thermal pressure, but the device has a higher bonding strength and a wider range of pressure applications. The PDMS microfluidic device can eliminate surface textures caused by processing to obtain better surface roughness when combined, and PDMS is an elastomer that can bend to a certain extent. 
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML124檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明