English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41635316      線上人數 : 1369
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84364


    題名: 利用改良液相剝離法提高銻烯合成產率與均質性之研究;High yield and uniformity of few-layer antimonene by modified liquid-phase exfoliation
    作者: 陳威霖;Chen, Wei-Lin
    貢獻者: 機械工程學系
    關鍵詞: 改良液相剝離法;銻烯
    日期: 2020-08-13
    上傳時間: 2020-09-02 19:12:49 (UTC+8)
    出版者: 國立中央大學
    摘要: 銻烯(Antimonene)為翹曲蜂巢狀結構(bucked honeycomb structure)的新興二維半導體材,因其本身具有2.28 eV的寬能隙、1329 cm2/Vs的載子遷移率,並且在大氣環境中的化學穩定性相較於二硒化銦(InSe2)以及黑磷烯(phosphorene)更為穩定,因此被視為具有發展潛力的二維材料之一。然而,銻烯所欠缺的關鍵技術為一種有效率、可大量製造高品質銻烯的生產製程。現今主流製備銻烯的方法有許多種,其中液相剝離法(liquid phase exfoliation)是目前最有發展潛力的合成方法。
    不過目前液相剝離所生產的銻烯片層厚度大多約為幾百奈米(nm)到幾個微米(µm),而片層厚度少於幾十奈米(nm)的銻烯又面臨著片徑大小過小的問題,因此限制了實際的應用。因此本研究展示一種改良液相剝離製程的方法,通過對銻金屬粉末進行焠火處理,因焠火處理時銻金屬粉末表面因高溫發生昇華現象,而表面片層昇華導致銻金屬粉末整體厚度下降,使得液相剝離過程中的銻金屬粉末更容易剝離出較薄的片層,降低銻烯平均厚度並且提高銻烯產率。
    實驗結果由接觸角分析以及原子力顯微鏡(Atomic Force Microscopy)分析得知IPA為最適合銻金屬液相剝離之溶劑,而平均片徑大小63.4奈米、平均片層厚度為1.46奈米,並且從本實驗所生產之少層銻烯統計分析中發現本實驗有助於提高銻烯尺寸均一性,使用可紫外光-可見光光譜(Ultraviolet – Visible Spectroscopy)可計算出光能隙為2.79 eV,而產率達到36.1 %。並且從X射線繞射圖譜(X-Ray Diffraction)結果發現沿著(012)晶面最為容易剝離出少層的銻烯。此方法提供了一種簡單、快速且具備大量生產的途徑,並且有助於降低成本效益以及提高產量的優勢。
    ;Antimonene is an emerging two-dimensional semiconductor material that is buckled honeycomb structure, wide bandgap 2.28 eV, and 1329 cm2/Vs carrier mobility. Compared to well-studied 2D materials such as InSe2 or phosphorene, antimonene has higher chemical stability under the atmosphere. Therefore, it is regarded as one of the next-generation electronics materials. However, the bottle-neck of antimonene is out of a proper method to produce high-quality antimonene. Nowadays, the frequently-used method is liquid-phase exfoliation; however, the as-prepared antimonene can only have around hundreds of nanometers to a few micrometers thick or less than tens nanometer in lateral size, thus limits the practical application of of antimonene .
    Herein, we provide an improved liquid-phase exfoliation by quenching antimony powder in advance. During the quenching process, the surface of the antimony powder not only flattens but also declines the thickness due to the high temperature. Moreover, this process also plays a main role to assist the reduction of the thickness and increasing the production yield of exfoliated antimonene flakes.
    As a result, atomic force microscopy (AFM) analysis shows the average flake size is 63.4 nm, and the average thickness is 1.46 nm; besides, the statistical analysis provides the evidence that this method allows to produce the high-uniformity in lateral size of antimonene. The optical band gap, analyzed by ultraviolet-visible spectrophotometry, is 2.79 eV, and the yield of antimonene is 36.1%. Finally, the X-ray diffraction (XRD) results indicate that the antimonene film can easily exfoliate along the (012) plane. This method provides a high-efficiency, cost-effective, and mass-production method for high-quality antimonene.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML91檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明