English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634246      線上人數 : 2628
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84370


    題名: 運用多層感知器於提升組織工程應用的生物支架品質之研究;A Research for Quality Improvement of Bio-Scaffold for Tissue Engineering Applications by Using Multilayer Perceptron
    作者: 姜孟竹;Jiang, Meng-Jhu
    貢獻者: 機械工程學系
    關鍵詞: 組織工程支架;冷凍成型積層製造;機器視覺;感興趣區域;多層感知器;Tissue Engineering Scaffold;Frozen-Form Additive Manufacturing;Machine Vision;Region of Interest;Multilayer Perceptron
    日期: 2020-08-18
    上傳時間: 2020-09-02 19:13:28 (UTC+8)
    出版者: 國立中央大學
    摘要: 生物支架材料大略可分為天然材料跟人工合成兩大類,目前最為廣泛使用的天然材料有膠原蛋白、明膠及殼聚醣等。由於上述材料係從動、植物取得,每批量配置出的生物墨水總有些許差距。生物列印之製造參數大多彼此相依,因此很難藉由理論推導出有效的預測公式。往往只能使用試誤法來調整製造參數來達到預設的尺寸目標。多層感知器為深度學習的一支,其可透過大量過往實驗數據訓練出一個有效預測模型,在新的數據輸入此一模型後進而預測結果,幫助改進生物支架的外形品質。
      本研究之目的是以深度學習的方式改進生物支架的外形品質。本研究運用多層感知器進行列印參數分析,研究不同的材料性質與製造參數對於支架品質的關聯性。製造參數包含了動力黏度、擠出壓力、噴頭溫度、噴頭移動速度、沉積平台溫度等等,根據這些模型可以看出動力黏度為列印過程中最相關的參數。實際製作75個支架做為訓練集,8個支架做為測試集,將動力黏度、噴頭溫度、噴頭移動速度、沉積平台溫度、環境壓力及室內露點溫度六種參數做為模型預測之重要參數,模型使用兩層隱藏層,所預測之評分與平均線徑的均方誤差最小為0.0246。
    ;The materials of bio-scaffolds can be roughly divided into two categories: natural and synthetic materials. The most widely used natural materials are collagen, gelatin and chitosan. As these natural materials are obtained from flora and fauna, there is always a slight difference between the bio-inks in each batch. Most of the fabrication parameters have dependence with each other, it is difficult to derive effective predictive formulas for manufacturing scaffolds. Often can only use the trial and error method to adjust the fabrication parameters for achieving the preset target. Multilayer perceptron is one kind of Deep learning, and it can train a model through a large amount of historical data, and predictable results obtain after inputting new data into the model. The capability can help to improve the appearance quality of the bio-scaffold.
      The purpose of this study is to improve the appearance quality of the bio-scaffold by utilizing deep learning. The multilayer perceptron is used to investigate the material properties and the fabrication parameters in order to achieve optimal quality of the scaffold. The fabrication parameters are based on kinematic viscosity, print pressure, nozzle temperature, nozzle speed, platform temperature, and so on. According to these models, it can be seen that the kinematic viscosity is the most relevant parameter in the printing process. 75 scaffolds were actually used as the training dataset and 8 scaffolds were used as the test set. Six parameters including dynamic viscosity, nozzle temperature, nozzle speed, platform temperature, print pressure and dew point temperature are used as important parameters for the model prediction. The model uses two hidden layers, and The minimum mean square error of predicted score and average line width is 0.0246.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML103檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明