English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43791624      線上人數 : 936
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84617


    題名: 基於深度學習模型之地電阻影像反算技術研究;A Study on Deep Learning for Inverse Problems of the Electrical Resistivity Imaging
    作者: 陳建志
    貢獻者: 地球科學學系
    關鍵詞: 地電阻反算;電阻率;機器學習;深度學習;Inversion;Electrical Resistivity;Machine Learning;Deep Learning
    日期: 2020-12-08
    上傳時間: 2020-12-09 10:02:25 (UTC+8)
    出版者: 科技部
    摘要: 地電阻影像剖面法常被應用於工程地質與水文地質等領域的議題研究中,是最廣受採用的工程地球物理技術之一。本團隊過去五年間建立的人工與天然電場監測系統,擁有在短時間內可收集大量電位資料,並經由網路即時回傳至研究室雲端硬碟的功能,將傳統地電阻調查工具擴大、延伸成高效能之監測成像技術,以便達成對地層電阻率構造的即時時變掃描工作。透過即時接收大量大地電位資料,研究者不必再頻繁奔走於野外場址與研究室兩地,乃可專注在電阻率影像的解算工作上。然而,伴隨持續回傳的大批電位資料,也同時彰顯了傳統反演解算流程的限制。一來大量的資料造成傳統反算在計算記憶體資源上的負擔,二來密集的電場掃描結果也要求反算速度的提升。本計畫乃提議導入深度學習網路,用以輔助傳統之反演解算流程,希冀此整合流程可以提供更快速、準確的電阻率影像剖面,以強化地電阻影像剖面法於水文地質與工程地質領域的應用。 ;Geo-electrical resistivity imaging method is often used in studies such as engineering geology and hydrogeology, and is one of the most widely used exploration geophysical techniques. The artificial and natural electric field monitoring system established by our team in the past five years has the ability of collecting a large amount of electrical potential data in a short period of time and transferring data to a specified cloud drive via a real-time network. By receiving a large amount of geoelectrical potential data in real time, researchers can focus on the calculation of inverting electrical resistivity structures subsurface. However, the large amount of electrical data continuously and intensively transferring back to the laboratory also highlights the limitations of the traditional inversion procedures. Firstly, a large amount of data causes a burden on the memory resources in the traditional inverse calculation. Secondly, the intensive scanning results also highly require an increase in the inverse calculation speed. This project therefore proposes the introduction of a deep learning network to assist the traditional inversion process. It is expected that this integration process can provide faster and more accurate resistivity images to enhance the electrical resistivity imaging method in applications of hydrogeology and engineering geology.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[地球科學學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML186檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明