中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84652
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41648108      在线人数 : 2180
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84652


    题名: 從能量學觀點探索細菌的逆境反應;Probing Bacterial Stress Responses from Energetic Perspective
    作者: 羅健榮
    贡献者: 物理學系
    关键词: 細菌能量學;ATP量測;微流道;膜電位;質子驅動勢;細菌鞭毛馬達;Bacterial energetics;ATP measurement;microfluidic device;membrane potential;proton-motive force;bacterial flagellar motor.
    日期: 2020-12-08
    上传时间: 2020-12-09 10:38:18 (UTC+8)
    出版者: 科技部
    摘要: 此計畫主要目標為從能量學的角度來探索細菌在遭受逆境時的反應。主要分為三大目標: 1.發展研究單細菌細胞生存的高通量高解析觀察實驗系統;2是發展單細菌細胞生理量測的技術;3是細菌生存的能量動力學。 細胞能量學是一個新興重要單細胞生物物理實驗領域,結合單細胞的精準量測與高通量的實驗方法,拓展生物基本單元的生存動力學研究。同時可以解析細胞差異性與單一活體細胞的運轉機制。我們將發展的一系列能量狀態量測工具,來研究細菌在逆境下的反應。 細菌是一個基本的生命體單元,單細胞細菌大約在數微米的尺度,面對相對變化多端的險惡環境。自然界中的細菌,通常在盛宴或飢荒(feast or famine)的極端狀態下尋求生存,亦即有良好資源下快速生長,缺乏資源下保存戰力求延續。我們對於細菌在快速生長的生理狀態有很好的理解,對於一分為二的分裂過程,內部調控與總體群體數目指數型增長有相當好的基本機制上的認識。但是對於其面對惡劣環境下的反應與群體數量的死亡過程是指數型衰減,只有片段的認識。 生命的基礎三要素是物質,資訊和能量。我們對於生命物質和資訊上的認知豐富,但是對於對應的整體細菌能量學,缺乏完整的認識。為了能進一步了解細菌的能量利用與分配,我們計劃以下的研究。第一,我們將發展研究單細菌細胞生存的高通量高解析觀察實驗系統。傳統高通量實驗方法並沒有辦法對單一細胞做精細的各種參數量測,例如流式細胞術(Flow cytometry);傳統高解析實驗要達到高通量實驗也有其困難,例如固定細菌的螢光顯微術。所以我們要發展與設計微流道高通量高解析的實驗裝置,同時間也要能夠進行長時間的紀錄,因為細菌的死亡過程是可達到數周的期間。第二是發展單細菌細胞生理量測的技術。我們已經發展完成單細胞pH量測與利用細菌鞭毛馬達轉速量測PMF總和。我們仍須發展發展新的膜電位感應分子,改良量測細胞內ATP濃度與發展光驅動蛋白來增加細胞膜電位。第三是最終目標來研究細菌生存的能量動力學。透過整合前面的技術,我們可以研究各種外在環境下細菌能量狀態與他們的生存性。我們將可用新的視野來研究細菌的生存與抗生素戰爭的新解決方案。 ;The aim of this project is to probe bacterial stress responses from energetic respective. There are three objectives. 1. Developing single cell high-throughput and high resolution optical measurement systems. 2. Developing cutting edge single cell energetic measurements and optoenergetic tools. 3. To study bacterial energetic survival kinetics..Cellular energetics is a developing biophysics fields combining single cell precise measurement and high throughput data collection to expand us understand to the single cell survival dynamics. We can investigate single cell functional mechanism and cell-to-cell variation. It is a new field standing on the giant’s shoulder that we are going to developing a serious technique to study bacterial energetic responses to the external stresses.A cell is a fundamental unit of life. Single cell bacterium is about few micro-meter in size and facing hostile environments. Bacterial cells in natural environments are typically in the “feast or famine” status seeking their survival. They can grow rapidly encountering resources and maintain necessities under stresses. We have good understanding of cell growth biochemistry, physiology and cell division leading to exponential growth. However, the mechanisms of cellular energetic stress response and the exponential decay death kinetics are limited. Material, information and energy are the three fundamental elements of living organisms. We have fruitful knowledge of biological materials and the information storage/transduction. However, there is no comprehensive understanding of cellular energetics. In order to reveal the usage and distribution of bacterial cellular energetics, we propose the following research. Firstly, we are going to develop single cell high-throughput and high-resolution optical measurement system. Traditional high-throughput experiments are limited for low resolution measurements. For example, flow cytometry can only provide low spatial resolution information from cells. On the other hands, high resolution experiments such as super-resolution fluorescence microscopy can only target limit number of cells at the same time. Therefore, there is an urgent need to develop microfluidic devices achieving both high-throughput and high-resolution experiments. Secondly, we will continue to develop single-cell physiology/energetic measuring tools. We have developed single-cell intracellular pH and using bacterial flagellar motor rotation to measure the PMF. To probe the bacterial cellular energetic response, we are going to develop new membrane potential probes, improving the ATP sensing protein Queen in bacteria and optical proton pumps. Thirdly, our final goal is to understand bacterial energetic consumption and survival kinetics. Combining the new experimental systems and energetic parameters measurements, we are able to study the bacterial energy status, consumption and survival kinetics. Though gained new knowledge, we will be able to have new perspective to understand bacterial survival and potentially, a new solution for the anti-superbug war.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[物理學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML158检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明