English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43368997      線上人數 : 1317
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84710


    題名: 人工智慧在前瞻電子設計自動化技術的應用(II)-子計畫三:用機器學習進行負偏壓溫度不穩定性於異構多核心系統之偵測與減緩;Machine Learning Based Negative-Bias Temperature Instability (Nbti) Detection and Mitigation for Heterogeneous Multi-Core Systems
    作者: 陳聿廣
    貢獻者: 電機工程學系
    關鍵詞: 異構多核心系統;負偏壓溫度不穩定性;老化感知器;生成對抗網路;非對稱式老化;Heterogeneous Multi-Core System(HMS);Negative-Bias Temperature Instability (NBTI);aging sensor;Generative Adversarial Network (GAN);asymmetric aging
    日期: 2020-12-08
    上傳時間: 2020-12-09 10:46:12 (UTC+8)
    出版者: 科技部
    摘要: 隨著半導體製程的演進與晶片製作技術的進步,現今已能在較小的晶片體積中實現高複雜度之資料處理與運算,異構多核心系統(HMS)已被廣泛利用,透過將適當的工作內容與執行核心進行匹配處理,將能更有效率地進行資料運算與處理。同時,老化效應(Aging effect)對晶片的可靠度造成了嚴重威脅,其中負偏壓溫度不穩定性(NBTI)將會隨著晶片的運作,逐漸提高P型電晶的閾值電壓(threshold voltage),使得晶片在使用一段時間後,其訊號傳遞延遲將有可能大於設計時所制定之規格,進而造成訊號之時序錯誤,而影響晶片之可靠度。為了避免此一現象,偵測NBTI造成之訊號傳遞延遲方法及減緩NBTI之設計與優化等方法陸續被提出,然而卻少有文獻著重於NBTI對HMS統造成的影響進行較深入的探討。因此在此計畫中,我們將深入探討HNS在執行不同工作內容的情況下,NBTI對不同模組造成的老化影響,透過機器學習進行晶片老化狀態偵測與偵測結果校準,並透過此結果,在系統層級進行延緩老化策略開發。具體而言,本研究將解決下列兩大困難問題:1.利用機器學習演算法進行晶片模組中老化感測器之布局及結果校準2.考量負偏壓溫度不穩定效應之異構多核心系統生命週期延長策略 我們將利用機器學習演算法,先進行老化感測器於晶片模組中之布局,再開發工作內容與執行核心之匹配演算法,達成延長HMS老化之目標。 ;As CMOS technology continuous scaling down, a single chip can perform complicated data processing. Heterogeneous Multi-core System(HMS) can provide higher performance by appropriately performing task-to-core assignment. On the other hand, aging effect has become one of the most drastic challenges in modern IC design. Negative-Bias Temperature Instability (NBTI) effect can result in increased threshold voltage of pMOS transistors and may lead to timing failure after circuit aging. To mitigate or tolerance NBTI, previous researches developed different design structures as well as optimization strategies. However, only a few studies focus on NBTI-induced problems on HMSs. Therefore, in the proposal, we want to deeply study these NBTI-induced problems on HMSs, and develop a machine learning based algorithm to detect the aging situation of different modules in the HMSs, and propose a system level NBTI mitigation strategy.Specifically, this proposal addresses on the following two problems:1. Using machine learning algorithm to deploy and calibrate aging sensors in different modules of HMSs.2. NBTI-aware HMS system lifetime extension strategyWe will use machine learning algorithm to appropriately deploy aging sensors, and then develop a task-to-core mapping algorithm to extend the HMS system lifetime.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[電機工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML154檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明