中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/84741
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42142936      在线人数 : 1337
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    NCU Institutional Repository > 理學院 > 數學系 > 研究計畫 >  Item 987654321/84741


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84741


    题名: John-Stromberg 不等式與 VMO 函數類;The John-Stromberg Inequality and Vmo Type Spaces
    作者: 林欽誠
    贡献者: 數學系
    关键词: John-Stromberg 不等式;仿射 VMO;Monge-Ampere 方程;正則性;John-Stromberg inequality;affine VMO;Monge-Ampere equation;regularity
    日期: 2020-12-08
    上传时间: 2020-12-09 10:49:43 (UTC+8)
    出版者: 科技部
    摘要: 我們研究架構於一般集合族上的 John-Stromberg 不等式,而這個集合族滿足拓樸測度空間上的一些公設條件,包含歐式空間上的嚴格凸函數所衍生的 section 族。也會引進對應的仿射 VMO 空間,並研究該空間的相關性質。有了上述相關結果後,我們就有可能證明局部非退化 Monge-Ampere 方程解的正則理論。 ;We study the John-Stromberg inequality over families of general sets in topological measure spaces satisfying certain axioms, which include families of sections induced by strictly convex functions in $\Bbb R^n$. Affine VMO space is introduced and studied. Then we will present a regularity theory for entire solutions of locally nondegenerate Monge-Ampere equation $\det D^2u=f(x)$ with $f$ in local affine VMO space.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[數學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML171检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明