English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43584601      線上人數 : 973
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/84808


    題名: 雷射積層製造金屬射出成型 (MIM)異形水路模具及其鐵基金屬玻璃粉體開發 (IV)-雷射積層製造金屬射出成型 (MIM)異形水路模具及其鐵基金屬玻璃粉體開發 (IV);Development of Techniques for Laser Additive Manufacturing Mold in Metal Injection Molding (Mim) Using Fe-Based Metallic Glass Powder (Iv)
    作者: 何正榮;賴景義;崔海平;鍾志昂;林志光;李朱育;鄭憲清;鍾禎元
    貢獻者: 機械工程學系
    關鍵詞: 金屬射出成型(MIM)模具;隨形水路;鐵基金屬玻璃合金粉體;模流分析;雷射積層製造;參數調校;機器學習;超音波輔助放電加工;應力/變形檢測;Metal injection molding (MIM);Conformal cooling channels;Fe-basedmetallic glass powder;Mold flow analysis;Laser additive manufacturing;Parameter adjustment;Machining learning;Ultrasonic vibration-assisted electrical discharge machining;Stress/deformation measurementtransfer.
    日期: 2020-12-08
    上傳時間: 2020-12-09 11:02:33 (UTC+8)
    出版者: 科技部
    摘要: 本計畫旨在開發金屬積層製造之鐵基金屬玻璃粉體及其粉體製程技術,並應用於金屬射出成型(MIM)隨形水路模具製造。鐵基金屬玻璃材料具高硬度、耐磨耗與耐腐蝕性,可解決現行MIM模具壽命不足的問題,而隨形水路模具之高冷卻效益則是MIM元件大型化的關鍵。在新鐵基金屬玻璃粉體開發方面,過去三年本團隊經由成份微調改變,在能維持鐵基金屬玻璃硬度下將其破裂韌性從4提升至12 MPa√m,可適用於模具應用,並完成小批量之試量產。於此同時,本團隊也以模具鋼粉體完成兩套商用MIM元件之隨形水路模具,並實際射出成型元件,驗證雷射積層製造之可適性與優異散熱特性,同時引入模流分析,有效地輔助參數調教。其他代表性技術上包括:為了配合鐵基金屬玻璃模具堅硬之二次加工特性,所研發之創新液中超音波磨削技術,可將金屬玻璃表面研磨至17 nm (Ra);金屬雷射積層製造變形/殘留應力快速計算評估,可節省50%之試誤工時與材料成本;大面積變形/殘留應力之創新DIC量技術與設備;以及,單機多流體物性之量測技術與設備。同時,過去三年本團隊產出相關論文22篇、提出兩項專利申請,衍生產學計畫12件,計畫金額585萬元。奠基於此,本計畫第四年的工作項目如下:1、完成新鐵基金屬玻璃粉體之大批量商用量產技術與技轉;2、完成大連桿元件隨形水路模具及元件之射出成型與燒結成型參數調校;與,3、以自製量產之鐵基金屬玻璃粉體完成積層模具成形、二次加工製造與檢測。項目1係與本地金屬粉體製造商合作,使自主性的鐵基金屬玻璃粉體可實際商用量產,並技術移轉合作廠商;項目2係以合作廠商目前連續性射出成型瑕疵多、製程不穩的大連桿元件為目標,開發其3D隨形水路模具提升散熱效率,並在射出及燒結成型過程,加入機器學習建立參數調教模型,避免製程參數調教仰賴工程師個人經驗;而項目3以自主製造之量產粉體、積層製造參數、二次超音波輔助鐵基金屬玻璃放電加工磨削與檢測技術,完成MIM元件模具。據此,本計畫第四年開發MIM之自主性的鐵基金屬玻璃粉體量產、雷射積層模具製造、以及射出成型與燒結參數調校之關鍵技術,以達成 (1)加速MIM模具製作時程、降低製作成本、(2) 提升MIM模具壽命、與(3)鐵基金屬玻璃粉體量產技術移轉合作廠商之計畫目標。 ;This project aims at establishing a novel technique for mass-producing Fe-based metallic glass powder (Fe-MGP) and developing its laser additive manufacturing (LAM) technique for making metal injection molding (MIM) molds with conformal-cooling channels (CCCs). Metallic glass has high hardness, wear resistance and corrosion resistance, which can solve the problem of insufficient life-span of current MIM molds while the high cooling efficiency of CCCs is one of the core techs to promote MIM to produce large-size components. In the past three years, the proposing team has successfully developed a recipe of Fe-MG that increases fracture toughness from 4 to 12 MPa√m while maintaining hardness. At the same time, we used the mold steel powder to manufacture two MIM mold inserts, with CCCs, through LAM. The feasibility and excellent cooling performance of these MIM molds were demonstrated through their employments for producing inline commercial MIM components. Meanwhile, the technique of mold flow analysis was also introduced for parameter adjustment during the MIM injection molding process. Other relevant technologies developed include: 1) an innovative ultrasonic grinding technology in liquid, which can polish the Fe-MG mold to a mirror level, surface roughness of Ra = 17 nm;2) a rapid simulation method, that can fast evaluate deformation and residual stresses in the LAM-fabricated mold. This scheme can save, at least, a 50% cost in trial-and-error time and material usage;3) a new digital image correction technology, that can process two-dimenstional deformation and residual stress; and, 4) an innovative property measurement machine, which can simultaneously measure a liquid's surface tension, viscosity and density. In addition, during the past three years, we have published 22 papers, filed 2 patent and conducted 12 industry-academia research projects, with a total amount of 5.85 million.Based on the aforementioned accomplishments, the following three tasks are set for this 4th year’s proposal. (1) Complete the process parameter development for mass producing Fe-MGPs and its technology-transfer course. (2) Realize a new CCC-based MIM mold inserts for manufacturing a key connector. (3) Finish a CCC-based, LAM-fabricated mold insert using our Fe-MGPs and the mold's follow-up surface polishing. Task 1 is to cooperate with a local metal power manufacturer to enable the mass production of our developed Fe-MGPs. Task 2 aims to solve an existing, unstable process problem that keeps bothering a local company in MIMing a key connector. The artificial intelligence models will also be established for adjusting both the injection and sintering process parameters that can avoid the uncertainties relying on engineers’ personal experiences. Task 3 is to realize a LAM-manufactured MIM mold insert, fabricated using the new Fe-MGPs, machined by a self-developed ultrasonic vibration-assisted electrical discharge machining tech.Accordingly, this year’s objective is hereby set as the development of the self-generated MIM’s key technologies including mass production of Fe-MGPs, manufacturing of LAM-based MIM mold insert, and parameter adjusting methods for injection molding and sintering to achieve the ultimate goals of (1) acceleration of mold production and reduction production cost, (2) enhancement of mold life-span, and (3) technology transfer of mass-producible method of Fe-MGPs.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[機械工程學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML166檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明