ZnO薄膜於PET基板上形成柱狀纖鋅礦晶粒。根據XRD與SAD分析,ZnO薄膜中的柱狀纖鋅礦晶粒具有(0002) basal-preferred和(101 ?0) prismatic-preferred兩種成長取向。由拉伸試驗得知ZnO薄膜的破裂應變量介於1.73%和2.14%之間,而ITO薄膜的破裂應變量介於0.24%和0.67%之間,表示ZnO薄膜的破裂應變量大約為ITO薄膜的3倍。根據HR-TEM圖像,識別出ZnO薄膜中存在著刃差排和螺旋差排。並且,觀察到刃差排和螺旋差排分別在basal-preferred和prismatic-preferred柱狀晶粒中移動。ZnO薄膜刃差排和螺旋差排的運動解釋了在施加應力的情況下ZnO的塑性變形。再者,為了將ZnO應用成可撓式透明導電膜,研究了ZnO/Cu/ZnO三明治結構的導電性和透光性。藉由I–V曲線證實了ZnO/Cu/ZnO三明治結構中ZnO薄膜的ohmic conduction機制。此外,ZnO/Cu界面的能帶圖表明ZnO和Cu之間的界面表現出ohmic contact行為。 ZnO/Cu/ZnO三明治結構(厚度20/5/20 nm至80/5/80 nm)的電阻率範圍為2.25×10-4 Ω·cm至9.72×10-4 Ω·cm。最低的電阻率(即2.25×10-4 Ω?cm)出現在20/5/20 nm薄膜中。在ZnO/Cu/ZnO三明治結構中,載子通過上層ZnO薄膜,並在中間層的Cu薄膜中傳輸,驗證了歐姆傳導行為。在可見光波段對於ZnO/Cu/ZnO三明治結構的透光率測量與計算表明,表層ZnO薄膜會使整體ZnO/Cu/ZnO薄膜的透光率增加。ZnO/Cu/ZnO三明治結構的透光率取決於ZnO層的厚度,60/5/60 nm表現出最高的透光率增強效果。其中,厚度的變因是由於在ZnO/Cu和Cu/ZnO界面處的反射光形成破壞性干涉所造成。此外,藉由Cu的延展性和ZnO的塑性變形,製成了ZnO/Cu/ZnO可撓式透明導電薄膜。;Columnar wurtzite grains in sputtered zinc oxide (ZnO) thin films have two preferential growth planes, namely, basal-preferred (0002) and prismatic-preferred (101 ?0) growth planes. The results of the tensile tests conducted in this study indicate that the fracture strain of the ZnO thin film occurs between 1.73% and 2.14% and the fracture strain of the indium tin oxide thin film occurs between 0.24% and 0.67%. With the high-resolution transmission electron microscopy atomic images, the edge and screw dislocations could be identified on the sputtered ZnO thin films. We conclude that the movements of the edge and screw dislocations in the basal-preferred and prismatic-preferred ZnO columnar grains account for the plastic deformation of the investigated ZnO thin films under tensile stress. The conductive and transparent properties of ZnO/Cu/ZnO sandwich structures were also investigated. The linear I–V curves confirmed the ohmic conduction mechanism of ZnO thin films in ZnO/Cu/ZnO sandwich structures. Moreover, the energy band diagram of the ZnO/Cu interface showed that the interface between ZnO and Cu exhibited ohmic contact behavior. The resistivity of ZnO/Cu/ZnO sandwich structures (with thicknesses between 20/5/20 nm and 80/5/80 nm) ranged from 2.25 × 10?4 Ω?cm to 9.72 × 10?4 Ω?cm. Transmittance measurement in the visible light region of the structures showed that the sandwiched ZnO layers increased the transmittance of the 5 nm Cu thin film. The 60/5/60 nm sandwich structure exhibited the best enhancement effect on transmittance. Thickness dependence was due to the destructive interference between the reflected light at the ZnO/Cu and Cu/ZnO interfaces in ZnO/Cu/ZnO sandwich structures. Furthermore, given the ductility of Cu and the plastic deformation of ZnO, a flexible transparent conductive thin film was produced.