English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%)
Visitors : 24741823      Online Users : 534
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/8593

    Title: 應用卡方獨立性檢定於關連式分類問題;Association Based Classification Using Chi-Square Independence Test
    Authors: 張毓美;Yu-Mei Chang
    Contributors: 資訊工程研究所
    Keywords: 資料探勘;關連式規則;分類;Association Rules;Classification;Data Mining
    Date: 2002-06-20
    Issue Date: 2009-09-22 11:31:22 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 分類問題一直是機器學習領域中的主要問題。近年來,由於關連式規則挖掘技術的興起,使得越來越多的研究以關連式規則挖掘的技術來解決分類問題。在本篇論文中,我們研究及探討幾個關連式分類問題的方法,並且提出一個新的分類方法,此方法稱為ACC(意即「應用卡方獨立性檢定於關連式分類問題」)。ACC利用關連式規則挖掘技術找出所有頻繁且有趣的項目集,利用這些項目集建立屬性與屬性之間的關係。除此之外,ACC利用卡方獨立性檢定來檢測屬性與類別之間的關係,以保留與類別相關的頻繁集來做預測。我們使用UCI機器學習資料庫中的13個資料庫進行實驗,將我們的方法(ACC)與NB及LB兩種高效率及高正確性的方法做比較。實驗結果顯示,我們的方法在大多數的資料庫上優於NB及LB,亦是一種高效率及高正確性的分類方法。 For many years, classification s one of the key problems in machine learning research. Since association rule mining is an important and highly active data mining research, there are more and more classification methods based on association rule mining techniques. In this thesis, we study several association based classification methods and provide the comparison of these classifiers. We present a new method, called ACC (i.e. Association based Classification using Chi-square Independence test), to solve the problems of classification. ACC finds frequent and interesting itemsets, which describe the relations between attributes. Moreover, it applies chi-square independence test to remain class-related itemsets for predicting new data objects. Besides, ACC provides an approach that considers the probability of missing value occurrence to solve the problem of missing value. Our method is experimented on 13 datasets from UCI machine learning database repository. We compare ACC with NB and LB, the state-of-the-art classifiers and the experimental results show that our method is a highly effective, accurate classifier.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明