在科技發展如此日新月異的時代,電化學沈積技術在除了近年來十分蓬勃發展的半導體及電子產業,在光電領域、能源轉換、感測技術等領域都有一定的地位,是一項相當受重視的技術,而本實驗研究的局部電化學沈積,可以將此技術應用在更精密的區域。 本實驗延續了學者Wang[13]的「異軸式雙螺旋演算」、學者Lin[14]的「可控柱徑雙螺旋」以及學者Yang[15]的「脈衝寬度調變PWM柱徑控制法」,在即時的影像中觀測銅柱形成,並引導其柱徑的寬度,延續前人的研究同時也發現了更多可以控制的環境變因,本實驗使用不同的陰陽極距離來達成不同的柱徑大小,研究不同電壓條件下的臨界距離建議區間。除了演算法的改進之外,本實驗製作更細小的陽極,也使用此陽極製作雙螺旋微結構並控制雙銅柱柱徑,研究各種方法使電鍍成品更加美觀也提升實驗成功率,紀錄了各種變因對實驗的影響,打造了一份更完整的數據,提出電鍍時各種環境變數設定的建議區間,進行深入的討論與研究。 ;In this era of rapid technological development, electrochemical deposition technology has a certain position in the fields of optoelectronics, energy conversion, sensing technology, etc., in addition to the booming semiconductor and electronic industries in recent years, and is an important Technology. The local electrochemical deposition studied in this experiment can be applied to more precise areas. This experiment continues the "different-axis double helix calculus" of scholar Wang[13], the "controllable cylinder diameter double helix" of scholar Lin[14] and the "Pulse Width Modulation PWM Cylinder Diameter Control Method" of scholar Yang[15]. Observing the formation of copper pillars in real-time images, and guiding the width of the pillar diameters, continuing previous research and discovering more controllable environmental variables. In this experiment, different cathode and anode distances are used to achieve different pillar diameters. And we provide the recommended interval of critical distance under different voltage conditions. In addition to the improvement of the algorithm, this experiment made a smaller anode, and also used this anode to make a double helix microstructure and control its diameter. Various methods were studied to make the electroplated product more beautiful and to increase the success rate of the experiment. The influence of the variable on the experiment has created a more complete data and conducted in-depth discussions and research.