近年來,電漿子光學(Plasmonic)由於其表面電漿共振造成的獨特光學性質而受到各界關注,透過使用各種金屬製作出不同形狀、大小的奈米結構,便能夠控制其光學性質變化,但通常一種奈米結構僅能對應單一特徵光譜。在這項研究中,我們利用真空熱蒸鍍沉積系統(Thermal evaporation system),將鎵金屬沉積於可拉伸彈性體聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)上,經過SEM和TEM觀察發現,在適當的製程參數下,鎵金屬粒子會沉浸於PDMS基板當中,自行排列成大小均一的球形奈米結構堆疊,相較於以裸露的形貌沉基於硬質基板上,沉基於彈性體內部可以更好的保護鎵金屬的奈米結構,藉由彈性體基板具有可逆拉伸的特性,我們將其固定於自製的拉伸模具上,拉伸PDMS基板來改變鎵奈米粒子之間的間距,便能看出肉眼可見的顏色變化,最後,本研究局域性表面電漿共振 (LSPR) 約300 nm的調控位移量,達到單一試體具廣域可調性及結構可逆性的目的。;Recently, Plasmonic structures have received increasing attention owing to their unique optical response resulting from the excitations of surface plasmons. It is generally possible to manipulate the optical properties of metals by changing the geometry, structure size, and periodic arrangement of their nanostructures. But the optical properties of common plasmonic structures is determined by their structural parameters and remains unalterable once fabricated. This research achieved tunable plasmonic nanostructures based on gallium nanoparticles(GaNPs) embedded in stretchable polymers(PDMS). The gap of nanoparticles can be changed by mechanical stretching of a homemade mold. Ultimate, the PDMS with GaNPs structures with good durability and wide range tunable and reversible LSPR peak shift (~300 nm) was achieved in this research.