校準(Calibration)為評估模型預測精確度的重要指標,若預測結果為存活時間,常見衡量模型預測校準的指標為布賴爾分數(Brier score)。在過去文獻中,布賴爾分數已應用於未設限資料和右設限資料下的參數模型或半母數存活模型,本研究在區間設限資料下將布賴爾分數推廣至三種半母數存活模型:比例風險(proportional hazards)模型、加速失敗(accelerated failure time)模型和比例勝算(proportional odds)模型,並且藉由布賴爾分數比較不同參數模型與半母數模型的預測準確度,進而選擇較適合的模型。而區間設限下半母數存活模型的參數估計是困難的,所以在比例風險模型和比例勝算模型,本文使用條件牛頓法(conditional Newton-Raphson)和迭代凸次要演算法(iterative convex minorant algorithm),而在加速失敗模型,使用最大近似伯恩斯坦估計法(Maximum approximate Bernstein likelihood estimation),來估計區間設限下半母數存活模型的迴歸參數。本文藉由模擬研究觀察區間設限下布賴爾分數在不同模型、樣本數以及區間設限長度下的表現,並將此方法應用於愛滋病資料以及乳癌資料。;Calibration is an important indicator of the predictive accuracy of a model. If the predictive outcome is survival time, the Brier score is widely used as an indicator of calibration. In literature, the Brier score is applied to the parametric model or semiparametric survival model under the uncensored and right censored data. In our study, the Brier score is extended to three types of semiparametric survival models under interval censored: the Cox proportional hazards model, the accelerated failure time model, and the proportional odds model. Consequently, the Brier score may be used for model selection. The parameter estimation of the semiparametric survival model under interval censored is not straightforward. In this study uses the conditional Newton-Raphson method and the iterative convex minorant algorithm proposed for the Cox proportional hazards model and the proportional odds model, and applied the maximum approximate Bernstein likelihood estimation for the accelerated failure time model. The performance of Brier scores under different models, sample sizes, and lengths of interval censored are evaluated by simulation study, and the proposed method is applied to breast cancer data and HIV data.