中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86282
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42142629      Online Users : 1188
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86282


    Title: Optimal Designs on Undirected Network Structures for Network-Based Models
    Authors: 陳玟秀;Chen, Wen-Hsiu
    Contributors: 統計研究所
    Keywords: 社交網路;處理效應;網路效應;網路建模;二分圖/循環圖/路徑圖;D最佳化準則;Social network;Treatment effect;Network effect;Network modeling;Bipartite/Cycle/Path graph;D-optimality
    Date: 2021-07-23
    Issue Date: 2021-12-07 12:26:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在生活中,具有網路結構的例子無所不在,例如在農業實驗、生物信息學、醫學實驗、機器學習、物理學、社會科學和許多其他科學領域,再加上社交網路的快速發展, 網路相關的議題已經成為一個新興的研究領域。為一個實驗單位指派處理會影響該實驗單位及其鄰居,並同時產生了處理效應和網路效應。在實驗設計的文獻中,Parker, Gilmour, and Schormans (2017) 和 Chang, Phoa, and Huang (2021) 都採用了線性網路效應模型來處理網路實驗。然而,這種模型並未得到廣泛應用。Kolaczyk and Cs?rdi (2014) 回顧了網路的統計模型,例如指數隨機圖模型和網路區塊模型。Zhang et al. (2019) 考慮了一種基於網路的邏輯斯迴歸模型來描述網路效應。本文擴展 Kolaczyk and Cs?rdi (2014) 以及 Zhang et al. (2019) 的想法提出了一種新的網路統計模型,並尋找最佳設計的條件。最後,我們通過模擬和真實例子來說明我們的理論且提供相對應的最佳設計。;With the rapid growth of social network services, network-related studies have become a burgeoning research area. Allocating a treatment to a unit affects the unit as well as its neighbors, simultaneously resulting in a treatment effect and a network effect. In the literature of experimental designs, Parker, Gilmour, and Schormans (2017) and Chang, Phoa, and Huang (2021) both adopted a linear network effect model to design experiments on general networks. However, this model has not been heavily recognized. Kolaczyk and Cs?rdi (2014) reviewed statistical models for network graphs such as exponential random graph models and network block models. Zhang et al. (2019) considered a network-based logistic regression model to describe the network effect. In this thesis, we propose a new statistical model for networks in the same spirit as Kolaczyk and Cs?rdi (2014) and Zhang et al. (2019). Moreover, we derive conditions for selecting optimal designs. Finally, we illustrate our theory through simulations and real examples.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML99View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明