中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86285
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41648026      Online Users : 2195
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86285


    Title: Data Reduction for Subsample in Gaussian Process
    Authors: 陳志剛;Chen, Chih-Kang
    Contributors: 統計研究所
    Keywords: 高斯過程;資料縮減;數據選取;Mallow’s Cp;Gaussian process;Data reduction;Data selection;Mallow’s Cp
    Date: 2021-07-26
    Issue Date: 2021-12-07 12:27:22 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 高斯隨機過程模型為一在電腦實驗廣泛使用的模型,其具備良好的預測能力。然
    而,配適此模型會牽涉到反矩陣的運算,因此當資料量龐大時相當耗時。近年來科技
    的發展導致資料的取得更為便利,卻也同時加劇了資料縮減的需求。本論文的研究目
    的便是透過資料縮減的方式,來減少高斯隨機過程模型配適造成的運算成本。本文提
    出的方法會在維持模型參數特性的情況下,進行資料縮減並同時提升模型的預測能力。
    此外在進行資料縮減的過程中,此方法不需要預先指定縮減的資料量,而是在縮減的
    過程中利用數據的特性找出最適當的資料量。本文以許多模擬實例來展示此方法之優
    點。最後,透過高斯模型跟多維常態分佈的關聯,本文所提出的方法與 Mallow’s Cp 有
    相似之處。本文亦闡述我們的方法與 Mallow’s Cp 之相似之處並比較。;Gaussian processes (GPs) are commonly used for emulating large-scale computer ex periments. However, parameter estimation is computationally intensive for a GP model
    given massive data because it involves the computation of the inverse of a big correla tion matrix. Recently, thanks to technological evolution, collecting data is getting easier.
    However, a great mass of data incurs the requirement for data reduction. Our purpose is
    to lessen the computational burden through data reduction. Our method maintains the
    characteristics of model parameters and improves the performance of predictions. Besides,
    instead of giving a size of reduced data in advance, we also try to find a proper size of
    the reduced data. We conduct several simulations for illustration. Additionally, from the
    connection between the GP and the multivariate normal distribution, we find that our
    method has an aspect in common with the Mallow’s Cp, a model selection criterion for
    linear regression. We also compare our method with the Mallow’s Cp.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML115View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明