中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86289
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41646885      Online Users : 2321
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86289


    Title: Gaussian Process Modeling with Weighted Additive Kernels
    Authors: 吳炳璋;Wu, Bing-Jhang
    Contributors: 統計研究所
    Keywords: 電腦實驗;相加模型;相關函數;Kriging;Computer experiments;Additive models;Correlation function
    Date: 2021-07-26
    Issue Date: 2021-12-07 12:28:05 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 電腦實驗在如今變得愈來愈熱門,高斯隨機過程因為具備高靈活性及內插性質,而成為其中一種被廣泛用在電腦實驗的代理模型。此外,高斯隨機過程對於複雜的反應曲面也具有相當優秀的預測表現。一個常見用來定義高斯隨機過程的共變異數函數的方法就是使用相乘性核函數。然而,當有兩個資料點離得太遠時,相乘性核函數可能會表現不佳。為了克服此問題,我們提出一個新的加權相加性核函數,其將相乘性核函數視為特例。我們透過模擬結果和實際資料來展現這個新方法具有較好的預測和解釋能力。;Computer experiments have become more and more popular nowadays. Gaussian processes (GPs) are one of the widely used surrogate models for computer simulators due to their high flexibility and the property of interpolation. GPs also possess good prediction performance for complex response surfaces. A common way for defining the covariance function of a GP is to use a product kernel. However, the product kernel may result in bad performance especially when two inputs have a large lower-dimensional distance. To circumvent this problem, we propose a new weighted additive kernel, which treats the product kernel as a special case. We show that the new kernel leads to better prediction and interpretation performance under several simulated examples and real datasets.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML103View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明