English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41354426      線上人數 : 2955
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86346


    題名: 基於機器學習之360度視訊的 VVC快速畫面間預測演算法;Machine Learning Based Fast Inter Prediction Algorithm of VVC for 360-degree Videos
    作者: 李穎;Lee, Ying
    貢獻者: 通訊工程學系
    關鍵詞: 360度視訊;EAC(equi-angular cubemap);VVC(versatile video coding);畫面間編碼;快速演算法;LNN(light-weighted neural network);360-degree videos;EAC(equi-angular cubemap);VVC(versatile video coding);inter frame coding;fast algorithm;LNN(light-weighted neural network)
    日期: 2021-07-19
    上傳時間: 2021-12-07 12:35:53 (UTC+8)
    出版者: 國立中央大學
    摘要: VVC(Versatile video coding)可降低高畫質視訊傳輸位元率,但VCC之編碼時間複雜度過高使其很難在即時傳輸設備上實現,也因此VVC編碼之快速演算法為視訊編碼中重要研究方向。EAC(equi-angular cubemap)格式為360度視訊格式之一,其相較於ERP(equirectangular projection)格式能減少冗餘資訊,然則現有VVC畫面間編碼的快速模式決策與深度決策演算法尚無針對EAC格式設計,因此本論文提出針對EAC格式設計之畫面間編碼快速劃分深度與模式決策演算法,其考慮EAC格式各面之影像內容相連性,與畫面間面之相關性,協助快速畫面編碼決策之準確性,並且畫面間編碼之深度決策與模式決策皆考量VVC新增之affine merge mode進行設計。又,與現有畫面間快速演算法方案相比,本論文採用LNN(light-weighted neural network)作為分類器,比經驗法則更能適應視訊內容之多樣性,並且相較於深度學習方案,僅使用中央處理器(CPU)便可以進行分類。實驗結果顯示本論文所提方案相較於VTM 7.0,平均可節省21%的編碼時間,並僅有1.03%BDBR之上升,與現有採用經驗法則之方案相比亦節省較多的編碼時間節省。;VVC (versatile video coding) can reduce the bitrate of the high-resolution videos before transmission. However, the encoding complexity of VVC is extremely high cause it hard to implements in real-time hardware. Therefore, fast algorithm of VVC encoder is important. EAC (equi-angular cubemap) format has lower redundant information than ERP format. There is not a fast inter mode or depth decision algorithm about EAC format within the survey of existing literatures. Accordingly, this paper proposed the fast inter prediction algorithm of VVC for EAC format to facilitate mode decision and depth decision process, which taking the inter prediction information of face and face boundary’s connection in EAC format into consideration. Furthermore, this paper considered method of affine merge mode which added by VVC in fast inter mode decision and depth decision. Compare with widely used classification models in VVC fast inter coding algorithms, LNN (light-weighted neural network) can better adjust oneself to different video and coding conditions than rule of thumb and just depends on CPU execution which is difficult on deep learning. Experimental results show that the proposed method reduce the encoding complexity of VTM7.0 about 21% with 1.03% BDBR (Bjontegaard delta bit rate) increasement in average and better than the rule of thumb.
    顯示於類別:[通訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML52檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明