中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86589
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41646672      Online Users : 2270
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86589


    Title: 用於邊緣計算的全新輕量化物件偵測系統;CSL-YOLO: A New Lightweight Object Detection System for Edge Computing
    Authors: 張育?;Zhang, Yu-Min
    Contributors: 資訊工程學系
    Keywords: 輕量級物件偵測器;YOLO;MS-COCO
    Date: 2021-08-02
    Issue Date: 2021-12-07 13:00:17 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於高階的GPU始終定價較高體積較大的等一些較高的門檻,開發輕量級的物件偵測器至關重要,為了減少計算資源的無謂損耗,如何降低冗餘的計算起著重要的作用。本論文提出了一種全新的輕量級卷積方法Cross-Stage Lightweight(CSL) Module,它以廉價的運算來生成較為冗餘的特徵圖。在中間擴展深度的階段,我們將過去使用的pointwise convolution更換為depthwise convolution以生成候選的特徵圖。我們提出的CSL-Module可以顯著地降低計算成本,在CIFAR-10上進行的實驗表明了CSL-Module可以逼近convolution-3x3的擬合能力。最後我們以CSL-Module及其衍伸模組為基礎建構了全新的輕量級物件偵測器CSL-YOLO,與Tiny-YOLOv4相比,在MS-COCO上進行的實驗表明了CSL-YOLO僅以其43% FLOPs和52% parameters即可達到更好的物件偵測性能,達到了state-of-the-art的水準。;The development of lightweight object detectors is essential due to the limited computation resources. To reduce the computation cost, how to generate redundant features plays a significant role. This paper proposes a new lightweight Convolution method Cross-Stage Lightweight (CSL) Module, to generate redundant features from cheap operations. In the intermediate expansion stage, we replaced Pointwise Convolution with Depthwise Convolution to produce candidate features. The proposed CSL-Module can reduce the computation cost significantly. Experiments conducted at MS-COCO show that the proposed CSL-Module can approximate the fitting ability of Convolution-3x3. Finally, we use the module to construct a lightweight detector CSL-YOLO, achieving better detection performance with only 43% FLOPs and 52% parameters than Tiny-YOLOv4.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML40View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明