中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86650
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41647900      Online Users : 2195
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86650


    Title: 結合時空資料的半監督模型並應用於PM2.5空污感測器的異常偵測;Semi-Supervised Model with Spatio-Temporal Data and Applied in PM2.5 sensor anomaly detection
    Authors: 張欣茹;Zhang, Xin-Ru
    Contributors: 資訊工程學系
    Keywords: PM2.5;異常偵測;半監督模型;時空資料結合;PM2.5;anomaly detection;semi-supervised model;spatio-temporal data integration
    Date: 2021-08-10
    Issue Date: 2021-12-07 13:04:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 台灣近年來 PM2.5 空氣汙染的議題逐漸受到重視,增設了許多價格
    較為低廉的感測器,但是這些感測器容易受到環境因素影響造成較大的
    誤差,加上數量龐大造成每台感測器的維護頻率低,單一區域感測器回
    傳的數值不如國家級測站來得可靠,
    本論文比較了監督式、無監督式、及半監督式的演算法在偵測異常
    傳感器的效果。為了結合感測器的時空資訊,我們將監測值轉成圖片資
    料、整合性資料、以及整合資料結合時序資料來準備訓練數據。我們根
    據工業技術研究所提供的檢測記錄得到感器測的狀態值(正常或異常),
    探討了標記資料的比例對半監督模型預測效能的影響。實驗結果顯示:
    我們研究的方法優於目前的隨機巡檢機制。;The PM2.5 issue has drawn much attention in Taiwan, and many
    inexpensive sensors have been deployed in recent years. However, these
    sensors are fragile and susceptible to environmental factors. In addition,
    the large number of sensors results in low maintenance frequency, so the
    monitored values returned by a single sensor are unreliable.
    This thesis compares supervised, unsupervised, and semi-supervised
    methods to identify the problematic sensors. We prepared the training
    data by converting monitored values into images, integrated data, and se quential data to incorporate the spatio-temporal information of the sensors.
    We obtained sensors’status (normal or abnormal) based on the inspec tion records provided by the Industrial Technology Research Institute. We
    explored how the ratio of labeled data to unlabeled data influences the per formance of the semi-supervised models. Experimental results show that
    our studied methods outperform the current inspection strategy (random
    inspection).
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML44View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明