中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86691
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41642403      Online Users : 1420
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/86691


    Title: 結合深度學習和特徵描述子為了局部指紋認出;Combined Deep Learning and Feature Descriptor for Partial Fingerprint Recognition
    Authors: 克安通;Chrisantonius
    Contributors: 資訊工程學系
    Keywords: 局部指紋;深度學習;卷積神經網路;特徵描述子;結合比對評估;partial fingerprint;deep learning;convolutional neural network;feature descriptor;combined matching evaluation
    Date: 2021-08-16
    Issue Date: 2021-12-07 13:07:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來,為了在使用行動裝置進行交易的情形下驗證使用者身分,局部指紋辨識變得相當重要。局部指紋辨識是以小範圍指紋進行身分驗證的技術,因為在進行局部指紋對局部指紋的比對時,比起完整指紋能辨別身分的特徵數量會有所減少,發展更有效及準確的方法是必要的。因此,本篇論文結合深度學習及特徵描述子進行局部指紋辨識,以提取局部指紋中最細微的特徵。深度學習方法基於使用CNN架構的孿生網路,特徵描述子方法基於SIFT演算法,最後的辨識結果則由兩種方法所得的比對分數加權得出。
    本篇論文針對各種情況進行實驗得到結果,像是不同的影像大小、不同的Epoch大小及不同的資料集。在FVC2002資料集上,DB1及DB3所得的EER約為4%,DB1及DB2所得的FRR@FAR 1/50000為6.36%及8.11%,這些結果證實本篇論文所提出的局部指紋辨識方法是準確及有效的。未來的研究可以向更高的影像解析度發展,指紋中細微的毛孔能作為特徵提升局部指紋辨識的效果,也可以使用不同的深度學習方法進一步簡化訓練過程。;Currently, partial fingerprint recognition has been considered and has become very important to identify a user′s authenticity in conducting a transaction through a mobile device. Therefore, developments to be more effective and accurate in identifying the authenticity of a user with a scanner reader that can only capture a small finger image area are needed. However, when applied in partial to partial fingerprint matching, there is a reduction in the features from full fingerprint image to partial fingerprint image. Therefore, we proposed this research using the combined method of deep learning and feature descriptors for partial fingerprint. The deep learning used in this research is based on the Siamese Network using the CNN architecture and the Feature Descriptor based on the SIFT algorithm to get minimal features from partial fingerprint. As the final result, the matching score is obtained by combining the scores from the two methods used (deep learning and feature descriptor). Then in the combination process, there is a weighting on the score obtained from both sides.
    The research results have been carried out on several variations of data such as image size, adequate epoch, and the type of dataset used. The results show that the proposed method by combining deep learning and feature descriptors method for the matching score evaluation in the FVC2002 yields an EER value of around 4% for DB1 and DB3. In addition, the result for FRR@FAR 1/50000 validation about 6.36% and 8.11% in the dataset DB1 and DB2. The result shows that the proposed method has good results in the implementation of partial fingerprint recognition. The development in further research can be developed using a dataset with a higher resolution. So that even though the recognition is carried out on a partial image, it still has featured in the form of detailed pores of a fingerprint and can use other deep learning methods to reduce the complexity of the training process.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML54View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明