English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41645284      線上人數 : 1318
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86820


    題名: 基於電漿發射光譜數據之人工神經網路輔助氮化鋁薄膜的應力分析與預測;Artificial neural network assisted stress analysis and prediction of aluminum nitride thin films based on optical emission spectroscopy data
    作者: 楊毓璞;Yang, Yu-Pu
    貢獻者: 機械工程學系
    關鍵詞: 機器學習;主成份分析;氮化鋁;薄膜應力;光放射光譜;Machine Learning;Principal components analysis;Aluminum Nitride;Thin Film Stress;Optical Emission Spectroscopy
    日期: 2021-07-07
    上傳時間: 2021-12-07 13:16:11 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本研究中,我們提交了由光學發射光譜(optical emission spectroscopy, OES)收集的復雜的及時電漿數據。在不考慮複雜因素的情況下,從一組復雜的物理參數,如氮化鋁(Aluminum Nitride, AlN)薄膜的殘餘應力獲取了一系列解決方案。AlN具有較高的應力穩定性、熱穩定性和化學穩定性,我們採用脈沖直流電濺射法在矽基板上沉積AlN。我們想要知道的一個重要答案是,沈積的薄膜的應力是壓縮的還是拉伸的。為了回答這個問題,我們可以訪問任意多的光譜數據,記錄數據生成一個庫,並利用主成分分析(Principal Component Analysis, PCA)來降低復雜數據的復雜性。經過PCA預處理後,我們試圖證明我們是否可以採用標準的人工神經網路(Artificial Neural Network, ANN),以獲得一個足夠解析度的機器思維分類方法來區分AlN薄膜的應力類型。因此,通過這些機器學習練習,這些輔助分類可以擴展到未來其他感興趣的半導體研究。;In this study, we present complex real-time plasma data collected by optical emission spectroscopy (OES). A series of solutions were obtained from a set of complex physical parameters, such as the residual stress of Aluminum Nitride (AlN) films, without taking into account complex factors. AlN has high stress stability, thermal stability and chemical stability. AlN was deposited on silicon substrate by pulsed direct current sputtering. One of the key answers we want to know is whether the stresses on the deposited film are compressed or stretched. To answer this question, we can access as much spectral data as we want, record the data to generate a library, and use Principal Component Analysis (PCA) to reduce the complexity of complex data. After PCA pretreatment, we tried to prove whether we could use standard Artificial Neural networks (ANN) to obtain a machine-mind classification method with sufficient resolution to distinguish stress types in AlN films. Therefore, through these machine learning exercises, these auxiliary classifications can be extended to other interesting semiconductor research in the future.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML46檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明