中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/86853
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41683073      線上人數 : 2477
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/86853


    題名: A Hybrid Embedding Approach for XLM to Dialect Neural Machine Translation
    作者: 黃嘉銘;Ka Ming, Wong
    貢獻者: 資訊工程學系
    關鍵詞: 無監督神經機器翻譯;深度學習;低資源;Unsupervised Neural Mechine Translation;Deep Learning;Low Resource
    日期: 2021-11-25
    上傳時間: 2021-12-07 13:20:12 (UTC+8)
    出版者: 國立中央大學
    摘要: 粵語是漢語的變體。在中國南方地區得到廣泛應用。此外,它在世界各地有很多演講者。雖然粵語和普通話的詞系統和大部分詞義相同,但由於語法和用詞的不同,這兩種方言不能相互理解。因此,為這些語言創建翻譯模型是一項重要的工作。無監督神經機器翻譯是應用於這些語言的最理想方法,因為並行數據很少。在本文中,我們提出了一種方法,該方法結合了改進的跨語言語言模型,並對無監督神經機器翻譯進行了逐層注意。在我們的實驗中,我們觀察到我們提出的方法確實將粵語到中文和中文到粵語的翻譯提高了 1.088 和 0.394 BLEU 分數。此外,我們發現訓練數據的領域和質量對翻譯性能有巨大影響。來自社交網絡,尤其是論壇(LIHKG 連登)的粵語數據解析,不是用於方言翻譯的理想資源。;Cantonese is a variant of Chinese. It has been widely used in the southern part of China. Also, it has lots of speakers around the world. Although Cantonese and Standard Chinese share the same word system and most of the word meaning, due to the difference in grammar and use of words, these two dialects are not mutually intelligible. Therefore, creating a translation model for these languages is a significant work. Unsupervised Neural Machines Translation is the most ideal method to apply to these languages because parallel data is scarce. In this paper, we proposed a method that combined a modified cross-lingual language model and performed layer by layer attention on unsupervised neural machine translation. In our experiments, we observed that our proposed method does improve the Cantonese to Chinese and Chinese to Cantonese translation by 1.088 and 0.349 BLEU score. Also, we discovered the domain and quality of the training data has a huge impact on translation performance. Cantonese data parses from the social network, especially from forums(LIHKG 連登), is not an ideal resource to use in dialect translation.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML112檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明