本研究利用配體輔助再沉澱法(LARP),以3-氨基丙基三乙氧基矽烷(APTES)取代傳統有機長碳鏈配體OA、OLA,在室溫及大氣環境下合成出具有高發光性能之CsPbBr3量子點,並在合成的過程中導入二氧化矽奈米球作為擴散粒子,使鈣鈦礦量子點生長於二氧化矽奈米球上,產生米氏散射,增加入射紫外光的光程,使紫外光有更多機會激發更多鈣鈦礦量子點,不僅解決了有機長碳鏈配體因沸點較高,合成後難以移除而造成後續元件製作困難的問題,也藉由二氧化矽奈米球的導入,提升了鈣鈦礦量子點的發光性能。 有別於合成前或合成後將二氧化矽奈米球加入萃取液中無法使鈣鈦礦量子點固著於奈米球上;先將二氧化矽奈米球與鈣鈦礦前驅液充分混合後萃取,才能使鈣鈦礦量子點生長於二氧化矽奈米球上。但在導入二氧化矽奈米球的過程中發現二氧化矽奈米球上殘留的氨會對量子點的發光波長產生影響,因此本研究設計了一系列實驗驗證及改善二氧化矽奈米球上殘留的氨造成發光波長藍移的問題。本研究也針對APTES配體的水解進行探討,並找出最佳的水解時間,成功製備出了鈣鈦礦量子點的擴散粒子。 最後將合成出的鈣鈦礦量子點擴散粒子導入聚甲基丙烯酸甲酯(PMMA)中製作出鈣鈦礦量子點擴散膜,添加量1%及4%的量子點擴散膜之PLQY分別達到35%及59%,且在大氣環境下放置30天後,發光波長及發光效率皆維持一定水準,顯示出優良的穩定性,在未來應用在顯示器產業上展現出無窮的發展潛力。;In this study, we use ligand-assisted reprecipitation (LARP) as our process, and (3-aminopropyl)triethoxysilane (APTES) was used to replace organic long carbon chain ligands to synthesize CsPbBr3 quantum dots with high luminescence properties. We introduce SiO2 nanospheres as diffusing particles in the synthesis so that perovskite quantum dots can grow on the SiO2 nanospheres thereby creating Mie scattering, increasing the optical path length of ultraviolet light. This creates more opportunities for ultraviolet light to excites more perovskite quantum dots. This solves the difficulties of removing long carbon chain ligands after synthesis in addition to creating improvements on the performance of perovskite quantum dots. SiO2 nanospheres need to be fully mixed with the perovskite precursor solution to allow the perovskite quantum dots to grow on the SiO2 nanospheres. In the process of introducing the SiO2 nanospheres, we find that the residual amine groups on the SiO2 nanospheres will affect the emission wavelength of the quantum dots. Therefore, we designed a series of experiments to verify and provide a solution to the blue shift that was caused by the residual amine groups on the SiO2 nanospheres. Furthermore, we discussed the hydrolysis of APTES ligands, found the best hydrolysis time, and successfully fabricated the perovskite quantum dot diffusing particles. Finally, we placed the diffusing particles into poly(methyl methacrylate) (PMMA) to produce diffuser films. The PLQY of the diffuser films with 1% and 4% solid content manifested 35% and 59%, respectively. After thirty days in the air, the emission wavelength and PL proved to not have significantly changed, showing excellent durability and showing infinite potential in the display industry in the future.