English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22924647      Online Users : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/8700


    Title: 結合群體智慧與自我組織映射圖的資料視覺化研究;Data Visualization using Swarm Intelligence and the Self-Organizing Map
    Authors: 蘇軾詠;Shi-Yong Su
    Contributors: 資訊工程研究所
    Keywords: 群聚分析;群體智慧;視覺化;cluster analysis;swarm intelligence;visualization
    Date: 2004-06-28
    Issue Date: 2009-09-22 11:33:12 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 群居的昆蟲(或動物)提供了我們一個有效的概念,來建立可彼此互動的分散式代理人系統。研究這些昆蟲(或動物)的群體行為,提供了我們一個有效的方法來解決許多困難的問題,例如最佳化等。愈來愈多的研究者,對於完成所謂的“群體智慧”(由一群簡單的代理人集體突現出的智慧)感到越來越濃的興趣。目前,已有許多研究者設計出各種的電腦模擬,來解釋鳥群、魚群或蟻群等生物間的移動模式。 本篇論文的研究動機來自於鳥類的覓食行為模式,我們把資料當作食物,藉由不斷的拋置於地上給成群的鳥群覓食,此鳥群會隨之調整他們的彼此位置來獲得奪取食物的機會,每隻鳥會在搜尋食物的過程中,從其他的鳥獲得食物來源的資訊,因為每隻鳥都會受到對該食物具有最佳反應的鳥所影響,而企圖朝向它來搜尋食物。漸漸地,鳥類會被分成幾個不同的群聚,而這些形成的群聚則會反應出資料的潛藏結構特性。 然而,大多數的實際資料是屬於高維度的資料型態;要如何分析高維的資料特性是個相當迫切的挑戰。自我組織映射圖(SOM)擁有可透過自我組織的過程,將高維的資料映射到低維度的空間上的特性。所以,我們整合了自我組織映射圖以及上述的群體智慧的概念,提出了一個新的視覺化方法“以群體智慧為基礎的自我組織特徵映射圖”演算法。此演算法允許我們利用人類擅長於二維平面上的分群能力來判斷群聚的數目;此外,我們並可依據所決定的群聚數目,將資料予以分群處理。最後,我們以九個不同特性的資料集合來測試所提出方法之有效性。 Social insects (or animals) provide us with a powerful concept to create decentralized systems of simple interacting, and often mobile, agents (e.g. ants, birds, etc.) The study of their behaviors provides us with effective tools for solving many difficult problems such as optimization, etc. More and more researchers are interested in this exciting way of achieving a form of swarm intelligence (i.e. the emergent collective intelligence of groups of simple agents.) They have created computer simulations of various interpretations of the movement of organisms in a bird flock, fish school, or ant colonies. In this paper, a new data visualization method, which was inspired by real birds behaviors, is proposed. In this method, each data pattern in the data set to be clustered is regarded as a piece of food and these data patterns will be sequentially tossed to a flock of birds on the ground. The flock of birds adjusts its physical movements to seek food. Individual members of the flock can profit from discoveries of all of other members of the flock during the search for food because an individual is influenced by the success of the best neighbor and tries to imitate the behavior of the best neighbor. Gradually, the flock of birds will be divided into several groups according to the distributions of the food. The formed groups will naturally correspond to the underlying data structures in the data set. However many practical data sets are consisted of high-dimensional data points; therefore, how to generalize the aforementioned idea to cluster high-dimensional data sets is a very demanding challenge. Since the Self-Organizing Map (SOM) algorithm can project high-dimensional data points into a low-dimensional space through a self-organizing procedure we decide to integrate the SOM algorithm with the foregoing swarm intelligence to propose a new data visualization algorithm d. We then name the new data visualization algorithm as the Swarm Intelligence-based SOM (SISOM) algorithm. The algorithm allows us to use our visualization to decide the numbers of clusters and then cluster the data set based on the estimated cluster number. Nine data sets are used to demonstrate the effectiveness of the proposed algorithm.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat
    0KbUnknown690View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明