English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42119645      線上人數 : 1507
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/87019


    題名: Analysis Internal Reforming Proton Conducting SOFC-MGT Hybrid System for High Performance with Lowest Emission Fueled by Biofuels
    作者: 阿奇邁;Azhari, Achmad Andi
    貢獻者: 機械工程學系
    關鍵詞: 內部重組;質子傳導固態氧化物燃料電池;微型燃氣渦輪機 (MGT);混合配置建模;蒸汽到碳(S / C)效應;Matlab Simulink;Internal Reforming;Proton Conducting Solid Oxide Fuel Cell;Micro Gas Turbine (MGT);Configuration Hybrid Modelling;Steam to Carbon (S/C) effect;Matlab Simulink
    日期: 2021-10-12
    上傳時間: 2021-12-07 13:44:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 摘要
    全球發電中的可再生能源從 2019 年的 27%增加到 2020 年的 29%,是歷史上年度
    最大的增長。在電力行業中,2020 年的 CO2排放量減少了 3.3%(即 450 噸),這是有記
    錄以來最大的相對及絕對?少量。儘管去年 COVID-19 大流行減少了電力需求,但可再生
    能源發電的加速擴張是該部門減少碳排放的最大貢獻者。為了增加綠色能源的使用,固態
    氧化物燃料電池是未來的能源之一,因為在高溫下產生的任何一氧化碳都會轉化為二氧化
    碳,因此 SOFC 的廢氣排放量非常低。
    質子傳導及內部重組將與 SOFC 結合使用,質子傳導提供了更好的電導率,因為質
    子離子比氧化物離子小得多,且由於系統的複雜性及內部溫度分佈均勻,所以在 SOFC 中
    將採用內部重組器。此外,SOFC 可以在高溫下運行,因此可以與其他底部循環(例如
    MGT)集成,以提高系統效率。化學計量的蒸汽轉化為碳(S/C),以控制 CO2 的產生。
    電解質的電導率隨溫度升高而增加,以通過控制分割比(SPR)、空氣的化學計量比
    (StAir)與燃料的化學計量比(StAir)來控制溫度。對甲烷,丙烷和乙醇燃料進行了研
    究,基於熱力學分析來模擬,其使用 Matlab 7.6 版/ Simulink 7.1 版/ Thermolib 5.1.1.5353 開
    發,並使用文獻中的公開數據進行了驗證。
    結果表明,在 SPR、StAir 和 StFuel 變化的情?下,蒸汽碳比(S/C)對 CO2 產量
    的影響為:(1)對 S/C 和 SPR 的影響:方案 3 是甲烷燃料更好的配置,當 SPR 為
    0.6-0.8 時,CHP 效率占 90%,在每個S/C 變化中,當S/C 1 和 SPR 為 0.8 時,CO2產量
    成功減少,占0.0001 莫耳/秒。(2)對S/C和StAir的影響:降低StAir效能將會提高,結果
    表明,在 S/C 1 中降低蒸汽碳比顯著降低至 0.0000079 莫耳/秒時,採用方案 3 的配置更
    好,當 StAir 為 1.5 時,CHP 效率為 94%。ii
    (3)影響 S/C 和 StFuel:通過增加 StFuel 意味著增加 廢燃料在燃燒室中燃燒以提高系統
    溫度,因此功率和效率也會隨著溫度的升高而增加,因為電池電導率會隨著溫度的升高
    而增加。以丙烷為燃料的方案 3 之效率最高,其 S/C 1 和 燃料化學計量比分別為 88%
    和 1.08,其次是甲烷和乙醇,分別為 83%和 85%。對於 CO2 產量,甲烷的產量最低,
    為 0.000008 莫耳/秒。結論:使用 S/C 1 可以?少 CO2 的產生。通過控制 SPR 0.6-0.8,
    降低空氣化學計量比至 1.5,增加燃料使用量至 1.08,可以提高效率。;ABSTRACT
    Renewable energy in global power generation increased from 27% in 2019 to 29% in 2020,
    the largest annual increase in history, In the power sector, CO2 emissions fell by 3.3% (or 450 Mt)
    in 2020, a relative and absolute reduction biggest on record. While the COVID-19 pandemic
    reduced electricity demand last year, the accelerated expansion of power generation from
    renewable energy is the biggest contributor to reducing emissions from the sector. Take the
    moment to increase the use of green energy, solid oxide fuel cell is one of the future energy
    because any carbon monoxide produced is converted to carbon dioxide at the high operating
    temperature, therefore SOFC have very low emissions in exhaust gases.
    Proton conducting, internal reforming will have combined with SOFC, due to proton
    conducting has a provide better conductivity because proton ion is much smaller than oxide ion,
    and to complexity of the system with well distribution temperature internally reformer will have
    used inside of SOFC. Also SOFC can operate in high temperature so can be integrated with other
    bottom cycles such us MGT to increase efficiency of the system. Stoichiometry steam to carbon
    (S/C) to control production of CO2. The electrolyte conductivity increase with increasing
    temperature, to control temperature by controls split ratio (SPR), stoichiometry of air (StAir), and
    stoichiometry of fuel (StAir). There are investigated for methane, propane and ethanol fuels. The
    simulation based on the thermodynamic analysis and developed using Matlab Version
    7.6 / Simulink Version 7.1 / Thermolib 5.1.1.5353 and validated using published data in the
    literature.
    Result show, Steam to carbon (S/C) effect for CO2 production with SPR, StAir and StFuel
    variation: 1). Effect S/C and SPR: Schematic 3 is better configuration with methane fuel have
    CHP efficiency is account of 90% when SPR 0.6-0.8, in each S/C variation and CO2 production
    successfully decreases when in S/C 1 & SPR 0.8 the account was 0.0001 mole/s. 2). Effect S/C
    and StAir: By decreasing StAir performance will increase result show using schematic 3 is better
    configuration when decreasing steam to carbon ratio has a significant decrease until 0.0000079
    mole/s and The CHP efficiency is 94 % when 1.5 StAir in S/C 1. 3). Effect S/C and StFuel: By
    increasing StFuel means increase waste fuel to burn in combustor to increase temperature system, so
    power and efficiency also increase because conductivity cells increase with increasing
    temperature. Configuration 3 with propane fuel is highest efficiency with account 88% in S/C 1iv
    and 1.08 fuel stoichiometry ratio, then 83% and 85 % for methane and ethanol. For CO2 production
    methane have lowest production with account 0.000008 mole/s. Conclusion, by using S / C 1 is
    proven to reduce CO2 production. And efficiency can be increased by controlling SPR 0.6-0.8,
    reducing air stoichiometry until 1.5 and increasing fuel use until 1.08.
    顯示於類別:[機械工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML131檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明