本研究使用固態反應法製備之電解質BCZY粉末,以濕行星式球磨將粒徑減小增加表面積作為陰極骨架材料,將三種不同燒結溫度作為變數個別為1000 ℃、1100 ℃、1200 ℃,製備出具有足夠孔隙率且與電解質連接性良好的BCZY陰極骨架,以最佳的燒結參數1100 ℃進行後續之浸潤實驗。浸潤溶液使用兩種配方進行比較,一為添加甘胺酸做為螯合劑並使用乙醇做為界面活性劑,為燃燒合成法之浸潤溶液配方,另一為使用乙二醇使前驅溶液脂化,烘乾後添加乙二醇單丁醚作為界面活性劑,以熔膠凝膠法之浸潤溶液配方,進行表面形貌、微觀結構以及孔隙率之探討,接著提升浸潤溶液負載量增加電化學活性位點,並獲得製備複合陰極之最佳負載量。 經由I-V直流極化曲線和電化學交流阻抗頻譜進行深入分析,以瞭解不同陰極結構在質子傳輸型固態氧化物燃料電池中的反應差異,隨著浸潤含量的提升可以增加三相界面的反應面積,導致極化阻抗之下降,並且得知過度的添加會造成孔隙率的不足,使陰極端氧氣無法充分擴散,進行氧還原反應造成額外阻抗的產生。 最佳效能參數為使用乙二醇浸潤溶液,負載量為55.8 wt.%之複合陰極,全電池於800 ℃下測得之效能:開路電壓為0.96 V、功率密度為388 mW/cm2。 ;In this study, the electrolyte BCZY powder prepared by the solid-state reaction method was used. Ball milling was used to reduce the particle size and increase the surface area as the cathode framework material. For the BCZY cathode backbone with sufficient porosity and good connectivity with the electrolyte, the subsequent infiltration experiment was performed with the best sintering parameter at 1100 ℃. The infiltration solution is compared using two formulations. One is to add glycine as a chelating agent and ethanol as a surfactant, using the infiltration solution formulation of the combustion synthesis method, and the other is to use ethylene glycol to grease the precursor solution. After drying, add ethylene glycol monobutyl ether as a surfactant, use an infiltration solution formula the sol gel method to discuss the surface morphology, microstructure and porosity, and then increase the loading of the infiltration solution to increase electrochemical activity site, and obtain the optimal infiltrated loading on BCZY backbone for preparing the composite cathode. Through the IV DC polarization curve and the electrochemical AC impedance spectrum for in-depth analysis to understand the reaction difference of different cathode structures in the proton transport solid oxide fuel cell, as the infiltration content increases, the reaction area of the three-phase interface can be increased. This leads to a decrease in polarization resistance, and it is known that excessive addition will result in insufficient porosity, so that oxygen at the cathode side cannot be fully diffused, and the oxygen reduction reaction proceeds to cause additional resistance. The best performance parameters are the composite cathode with a load of 55.8 wt.% using ethylene glycol infiltration solution, and the performance measured at 800 ℃ for the whole battery: open circuit voltage of 0.96 V and power density of 388 mW/cm2..