English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75533/75533 (100%)
Visitors : 27407155      Online Users : 283
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/8831

    Title: 以適應性背景相減法偵測及追蹤移動物體;Motion Object Detection and Tracking Based on Adaptive Background Subtraction
    Authors: 凌啟銘;Chi-Ming Ling
    Contributors: 資訊工程研究所
    Keywords: 背景相減;追蹤;移動物體偵測;background subtraction;track;motion detection
    Date: 2004-06-25
    Issue Date: 2009-09-22 11:35:40 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 一個自動監視追蹤系統在保全監視的應用上扮演了一個重要的角色。在本論文的研究中,我們發展了一個即時監視追蹤系統來追蹤移動的物體;例如,人、動物、車輛等。 我們的即時監視追蹤系統分成三個階段。第一階段是利用背景相減法偵測移動的影像點。在這個方法中,我們建立一個適應性的背景,這個背景能夠解決亮度改變及凌亂物件重複移動的問題。第二階段是移除陰影及雜訊,以減少對系統準確性的影響。第三階段是利用前景物件的色彩及形狀去構建一個前景物件,並且利用前景物件的特徵值比對、追蹤、及預測移動物件的下一個位置。 在實驗中,我們考慮到幾種不同的天氣;例如,晴天、陰天、多雲、雨天、黃昏、和夜晚,及不同的背景;例如,建築物、樹葉、道路等。從實驗的結果中,我們發現我們的系統都能在不同的天氣和不同的環境中準確的追蹤各種移動物件。 An automatic surveillance tracking system plays an important role in security applications. In this thesis, we develop a real-time surveillance system for tracking moving objects, like people, animals, vehicles, etc. Our system consists of three parts. In the first part, we use the background subtraction technique to detect the moving pixels. In the method, we build an adaptive background to deal with the problems of lighting change, and repetitive motions from clutter. In the second part, we remove the shadow and noise in the images to improve the system accuracy. In the third part, we construct the foreground objects with color and shape information. We also use foreground objects’ characteristic to match, track, and predict the position of the moving object. In the experiments, we consider several different weather conditions such as sunny, cloudy, dusky, rainy hours, and night, and different backgrounds like building, tree leaves, roads, and monitor screens. From the experimental results, we find that the proposed approach can accurately detect and track different moving objects in the different weather conditions, and environments.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明