English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634546      線上人數 : 2666
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/88320


    題名: A Real-time Embedding Increasing for Session-based Recommendation with Graph Neural Networks
    作者: 江明勳;Jiang, Ming-Shiun
    貢獻者: 資訊工程學系
    關鍵詞: 機器學習;推薦系統;圖神經網路;machine learning;recommendation system;Graph Neural Networks;session;unknown item
    日期: 2022-06-29
    上傳時間: 2022-07-13 22:46:28 (UTC+8)
    出版者: 國立中央大學
    摘要: 隨著機器學習研究的不斷進步,在沒有大量複雜數據的情況下獲得良好的性能,有時比要求模型從大量數據中獲得良好的性能更重要。在推薦系統領域,用有限的數據挖掘用戶的興趣是熱門的研究方向之一。

    基於會話圖神經網路是一種非常流行的推薦模型,它只需要簡單的用戶瀏覽記錄就可以做出很好的推薦,但是這種模型通常有一個明顯的缺點,它不能對模型在訓練階段沒有見過的未知項目執行任何操作,就算它不是冷啟動項目也一樣。這在實際應用中是一個大問題,機器不太可能重複訓練大型模型,會消耗大量資源。

    為了解決這個問題,本文提出了一種新穎的可控式添加方法,可以在不影響原始性能的情況下盡可能地添加有用的表示。在許多真實世界數據集上進行的大量實驗表明了我們方法的有效性和靈活性,並且它也有機會和潛力用於其他模型或其他任務。;As the research of machine learning continues to progress, achieving good performance without a large amount of complicated data is prioritized over asking the model to reach a good performance from huge data. In the field of recommendation systems, digging out users′ interests with limited data is one of the popular research directions.

    Session-based recommendations with Graph Neural Networks is a very trendy model, it can make a good recommendation with only simple user browsing records, however, this kind of model usually has an obvious disadvantage, it can not perform any actions on an unknown item which model have not seen during the training phase, even though it is not a cold start item. This is a big problem in practical applications, machines are unlikely to train the large model repeatly, at it will consume a lot of resources.

    To solve this problem, a novel controllable addition method is proposed, the useful representations can be added without affecting the original performance as much as possible. Extensive experiments conducted on many real-world datasets show the effectiveness and flexibility of our method, and it also has the opportunity and potential to be used in other models or other tasks.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML54檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明