English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 37704378      Online Users : 398
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/8925

    Title: 以多時段的 SPOT 衛星影像做雲層自動去除;Automatic cloud removal from multi-temporal SPOT images
    Authors: 曾筱婷;Hsiao-Ting Tseng
    Contributors: 資訊工程研究所
    Keywords: 線性頻譜分析法;多重解析度;多時段;雲層去除;衛星影像;remote-sensing image;cloud removal;linear spectral unmixing;multitemporal;multiscale
    Date: 2005-06-23
    Issue Date: 2009-09-22 11:37:47 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 在本論文的研究中,我們提出一個以多時段SPOT衛星影像來達成雲層自動去除的方法。這個方法共分成三個步驟:多頻譜影像增強、決定雲與雲陰影區塊、及影像鑲嵌。在第一步驟中,我們將影像色彩空間由RGB轉換到YCbCr進行影像增強,再依序調整亮度分量(Y)及色彩資訊(CbCr)分量。在第二步驟中,我們利用線性頻譜分析法(linear spectral unmixing method,LSU)標示出可能屬於雲材質的區塊,再利用一系列修正方法去除被誤判的區塊;例如,建築物、平原等高亮度像點,並且在厚雲區塊周圍找薄雲和雲陰影區塊,以達成標示出最佳雲及雲陰影區塊的目標。在第三步驟中,我們使用多重解析度離散小波轉換方法(multiscale discrete wavelet transform method)來解決影像接合所造成的邊界不一致的問題。 Partial cloud cover is a severe problem in optical satellite remote sensing. This problem can be partially overcome by acquiring multiple images at different time over a given region and the reasonably cloud-free composite image can be obtained by mosaic of the cloud-free areas in the set of images. In this paper, a multidisciplinary operational algorithm is proposed to generate cloud-free mosaic images from multi-temporal images acquired by the SPOT satellite images. First, the original images were enhanced in the YCbCr space. Then we choose the base image that has the least thin cloud cover and divide the base image into several grid zones. In the cloud determination, we use the linear spectral unmixing method (LSU) to extract all cloud cover pixels, but the method cannot handle thin clouds and cloud-shadow, and often confuse bright land surfaces as clouds. Therefore, we utilize an opening operator to exclude smaller confuse bright zones and eliminate unnecessary marking like plain or large sized buildings by checking difference with another SPOT image. At last, we find thin cloud and cloud-shadow in eight-neighbor grid zones around thick clouds based on the geometric relation and sun elevation angle. The cloud and cloud shadow grid zones of the base image are replaced by the same zones of other images. Comparing the base image and replaced image, we create a transition zone. Finally, the multiscale wavelet pyramid method is used to blend images in the transition zone.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明