拉曼光譜經常會伴隨著大量的螢光干擾,為了減少螢光干擾,我們從螢光能量共振轉移技術(fluorescence resonance energy transfer, FRET)看到了解決方法,利用螢光生命週期的特性,將螢光與拉曼訊號進行分離,由於目前只是初步的系統開發,我們使用生命週期特性與拉曼光譜相似的激發光代替拉曼訊號進行量測,確認系統是否能準確分離螢光與激發光,後續便能拓展回拉曼訊號與螢光的分離。我們使用頻率域的螢光生命週期技術(FLIM)進行實驗,由於頻率域需要對於光源和偵測訊號進行弦波調制,我們會先進行電路設計,設計出可以調制雷射二極體的驅動電路,後續使用零差檢測的方法,使用類比乘法器將偵測訊號與調制雷射的參考訊號相乘,便能透過此系統量測其等效生命週期,將螢光和激發光進行線性分離,得到激發光與螢光的強度比。;Raman spectroscopy is often accompanied by a large amount of fluorescence. In order to reduce background fluorescence, we have seen a solution through Förster resonance energy transfer (FRET) technology, using the characteristics of the fluorescence lifetime, the fluorescence and raman signal can be separated. Since it is only a preliminary system development, we use excitation light with similar lifetime characteristics to Raman spectrum instead of Raman signal for measurement to confirm whether the system can accurately separate fluorescence and excitation light. Follow-up This can be extended back to the separation of Raman signal and fluorescence. We use the fluorescence lifetime microscopy (FLIM) in the frequency domain for experiments. Since the frequency domain requires sine wave modulation for the light source and detection signal, we will first design the circuit and design a driving circuit that can modulate the laser diode. Use the homodyne detection method to multiply the detection signal and the reference signal of the modulated laser by an analog multiplier, and then the equivalent lifetime can be measured through this system, and the fluorescence and excitation light can be separated. The intensity ratio of excitation light and fluorescence can be obtained.