English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24666322      Online Users : 434
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/8953

    Title: 生物特徵辨識-手指紋路辨識;A New Approach to Biometrics Recognition based on Finger Crease Patterns
    Authors: 劉家村;Chia-Tsun Liu
    Contributors: 資訊工程研究所
    Keywords: 手指紋路;小波轉換;倒傳遞類神經網路;生物特徵識別;Wavelet transformation;Back propagation neural network;Biometric identification;Finger Crease Patterns
    Date: 2005-07-04
    Issue Date: 2009-09-22 11:38:17 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract:   生物特徵識別(Biometric identification)是目前熱門研究的主題之一,其中有一部份運用手部的特徵像是指紋(Fingerprint)、手的幾何(Hand geometry)、掌紋(Palmprint)與掌背血管(Vein of Palm-dorsum)等。其中,掌紋的特徵由主線(Principal lines)、皺褶(Wrinkes)與脊(ridges)所組成,而人類的整根手指上的紋路與手掌上的紋路亦有近似的三項特徵結構,即主線、皺褶、脊。因此,本論文嘗試取出手掌影像中的小指、無名指、中指和食指共四根手指上中央部位的長方形手指紋路(Finger Crease Patterns)當作興趣區域(Regions of Interest, ROI),再以小波轉換(Wavelet transformation)來取得小波能量特徵(Wavelet Energy Features, WEF),最後藉由倒傳遞類神經網路(Back propagation neural network, BPNN)來作比對。 Biometric identification is one of the popular research fields recently. Some of those use the features of hands like fingerprint, hand geometry, palmprint and vein of palm-dorsum. Palmprint has several features, which include principal lines, wrinkles and ridges. Also, the whole stick of finger is full of the similar structure of features (i.e. principal lines, wrinkles and ridges). In this dissertation, a new approach is introduced. In the image of the palm, we try to use Finger Crease Patterns on the central area of four fingers (little finger, ring finger, middle finger and forefinger) as regions of Interest (ROI). Next we computed the wavelet energy feature (WEF) through the use of wavelet transform. Finally, the back propagation neural network (BPNN) is applied for verification.
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明